【題目】如圖,將邊長為2的等邊三角形ABC繞點C旋轉120°,得到△DCE,連接BD,則BD的長為(
A.2
B.2.5
C.3
D.2

【答案】D
【解析】解:連接AD,由題意知,△ABC≌△EDC,∠ACE=120°, 又∵△ABC是等邊三角形,
∴AB=DC=BC=DE=5,∠ABC=∠ACB=∠DCE=∠E=60°,
∴∠ACE+∠ACB=120°+60°=180°,
∴B、C、E三點在一條直線上.
∴AB∥DC,
∴四邊形ABCD為菱形,
∴∠DBE= ∠ABC=30°,
∵∠DBE+∠BDE+∠E=180°,
∴∠BDE=90°.
∵B、C、E三點在一條直線上,
∴BE=4,
∴BD= = =2
故選:D.

【考點精析】通過靈活運用等邊三角形的性質(zhì)和旋轉的性質(zhì),掌握等邊三角形的三個角都相等并且每個角都是60°;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=kx2﹣2 x+1與坐標軸的交點個數(shù)是2,則k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣(2k+1)x+4(k﹣ )=0
(1)求證:無論k取何值,這個方程總有實數(shù)根;
(2)若等腰三角形ABC的一邊長a=4,另兩邊b、c恰好是這個方程的兩個根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個、3個和4個連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x=1,y=,x2+4xy+4y2的值是

A. 2 B. 4 C. 32 D. 12

【答案】B

【解析】解析:x2+4xy+4y2=x+2y2==4.故選B.

型】單選題
束】
9

【題目】下列因式分解正確的是( )

A. x2y2-z2=x2y+z)(y-z B. -x2y+4xy-5y=-yx2+4x+5

C. x+22-9=x+5)(x-1 D. 9-12a+4a2=-3-2a2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,P為線段AD上的一個動點,PEAD交直線BC于點E,當P點在線段AD上運動時,∠E與∠B,ACB的數(shù)量關系為________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】顧琪在學習了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是她在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的.根據(jù)你所學的知識,回答下列問題:

顧琪總共剪開了________條棱.

現(xiàn)在顧琪想將剪斷的重新粘貼到上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認為她應該將剪斷的紙條粘貼到中的什么位置?請你幫助她在上補全.

已知顧琪剪下的長方體的長、寬、高分別是、,求這個長方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(直接寫出結果):

(1)﹣2+5

(2)﹣17+(﹣3)

(3)(﹣10)﹣(-6)

(4)(﹣1)×(﹣12)

(5)﹣2×(﹣3)2

(6)﹣1÷(﹣5)

(7)﹣1200+(﹣1)200

(8)﹣0.125×(﹣2)3

(9)|﹣|

(10)(-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:三角形中,、分別是的平分線,、相交于點(知識鏈接:三角形三個內(nèi)角的和是180°。如圖是三角形的一個內(nèi)角)

(1)如果°求的度數(shù)。

(2)如果°直接寫出的度數(shù)

(3)探求的關系(用等式表示),并簡要說明理由。

查看答案和解析>>

同步練習冊答案