如圖,正方形ABCD中,E、F為BC,CD的上點(diǎn)且∠EAF=45°,求證:EF=BE+DF.

證明:如圖,把△ABE逆時(shí)針旋轉(zhuǎn)90°得到△ADG,
∴BE=GD,AE=AG,
∵∠EAF=45°,
∴∠FAG=90°-45°=45°,
∴∠EAF=∠FAG,
在△AEF和△AGF中,
,
∴△AEF≌△AGF(SAS),
∴EF=GF,
即EF=GD+DF,
∴EF=BE+DF.
分析:把△ABE逆時(shí)針旋轉(zhuǎn)90°得到△ADG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得BE=GD,AE=AG,再根據(jù)∠EAF=45°求出∠FAG=45°,然后利用邊角邊定理證明△AEF與△AGF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得EF=GF,即EF=GD+FD,即可證明EF=BE+DF.
點(diǎn)評(píng):本題考查了正方形四邊均相等,且各內(nèi)角均為直角的性質(zhì),考查了全等三角形的證明,本題把△ABE逆時(shí)針旋轉(zhuǎn)90°,構(gòu)建全等三角形△AEF與△AGF是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案