【題目】如圖,拋物線的對稱軸為直線,且過點,有下列結(jié)論:

;②;③;④;⑤,其中正確的結(jié)論有( )

A.①③⑤B.①②⑤C.①④⑤D.③④⑤

【答案】A

【解析】

根據(jù)拋物線的開口方向、對稱軸、與y軸的交點判定系數(shù)符號,及運用一些特殊點解答問題.

由拋物線的開口向下可得:a<0,

根據(jù)拋物線的對稱軸在y軸左邊可得:a,b同號,所以b<0,

根據(jù)拋物線與y軸的交點在正半軸可得:c>0,

abc>0,故①正確;

直線x=1是拋物線y=ax2+bx+c(a≠0)的對稱軸,所以=1,可得b=2a,

a2b+4c=a4a+c=3a+c,

a<0

3a>0,

又∵c>0

3a+c>0

a2b+4c>0,故②錯誤;

∵拋物線y=ax2+bx+c的對稱軸是x=1.且過點(,0),

∴拋物線與x軸的另一個交點坐標為,

當(dāng)x=,y=0,,

整理得:25a10b+4c=0,故③正確;

b=2a,a+b+c<0

b+b+c<0,

3b+2c<0,故④錯誤;

x=1時,函數(shù)值最大,

ab+c≥m2amb+c,

ab≥m(amb),所以⑤正確;

正確答案為:①③⑤三個.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,ABAC,OBOC,∠A90°,∠MONα,分別交直線AB、AC于點M、N

1)如圖1,當(dāng)α90°時,求證:AMCN;

2)如圖2,當(dāng)α45°時,問線段BMMN、AN之間有何數(shù)量關(guān)系,并證明;

3)如圖3,當(dāng)α45°時,旋轉(zhuǎn)∠MON,問線段之間BM、MN、AN有何數(shù)量關(guān)系?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝幸辉畏匠?/span>

(1) (2x-1)2=25

(2) 3x2-6x-1=0

(3) x2-4x-396=0

(4) (2-3x)+(3x-2)2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知動點A在函數(shù)的圖象上,ABx軸于點B,ACy軸于點C,延長CA交以A為圓心AB長為半徑的圓弧于點E,延長BA交以A為圓心AC長為半徑的圓弧于點F,直線EF分別交x軸、y軸于點MN,當(dāng)NF4EM時,圖中陰影部分的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學(xué)生進行調(diào)查,要求每名學(xué)生從中選出一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.

類別

類型

新聞

體育

動畫

娛樂

戲曲

人數(shù)

11

20

40

4

請你根據(jù)以上信息,回答下列問題:

(1)統(tǒng)計表中的值為_______,統(tǒng)計圖中的值為______,類對應(yīng)扇形的圓心角為_____度;

(2)該校共有1500名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校最喜愛體育節(jié)目的學(xué)生人數(shù);

(3)樣本數(shù)據(jù)中最喜愛戲曲節(jié)目的有4人,其中僅有1名男生.從這4人中任選2名同學(xué)去觀賞戲曲表演,請用樹狀圖或列表求所選2名同學(xué)中有男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆,售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是20元.調(diào)研發(fā)現(xiàn):

①盆景每增加1盆,盆景的平均每盆利潤減少2元,每減少1盆,盆景的平均每盆利潤增加2元;

②花卉的平均每盆利潤始終不變.

小明計劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加盆,第二期盆景與花卉售完后的利潤分別為(單位:元)

1)用含的代數(shù)式分別表示,.

2)當(dāng)取何值時,第二期培植的盆錄與花卉售完后獲得的總利潤最大,最大總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是指空氣中直徑小于或等于的顆粒物,它對人體健康和大氣環(huán)境造成不良影響,下表是根據(jù)《全國城市空氣質(zhì)量報告》中的部分數(shù)據(jù)制作的統(tǒng)計表.根據(jù)統(tǒng)計表回答下列問題,

12018712平均濃度的中位數(shù)為   ;

2)“扇形統(tǒng)計圖”和“折線統(tǒng)計圖”中,更能直觀地反映2018712平均濃度變化過程和趨勢的統(tǒng)計圖是   ;

3)某同學(xué)觀察統(tǒng)計表后說:“2018712月與2017年同期相比,空氣質(zhì)量有所改善”,請你用一句話說明該同學(xué)得出這個結(jié)論的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題原型)如圖,在中,對角線的垂直平分線于點,交于點,交于點.求證:四邊形是菱形.

(小海的證法)證明:

的垂直平分線,

,(第一步)

,(第二步)

.(第三步)

四邊形是平行四邊形.(第四步)

四邊形是菱形. (第五步)

(老師評析)小海利用對角線互相平分證明了四邊形是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.

(挑錯改錯)(1)小海的證明過程在第________步上開始出現(xiàn)了錯誤.

2)請你根據(jù)小海的證題思路寫出此題的正確解答過程,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勝利中學(xué)為豐富同學(xué)們的校園生活,舉行校園電視臺主待人選拔賽,現(xiàn)將36名參賽選手的成績(單位:分)統(tǒng)計并繪制成頻數(shù)分布直方圖和扇形統(tǒng)計圖,部分信息如下:

請根據(jù)統(tǒng)計圖的信息,解答下列問題:

(1)補全頻數(shù)分布直方圖,并求扇形統(tǒng)計圖中扇形對應(yīng)的圓心角度數(shù);

(2)成績在區(qū)域的選手,男生比女生多一人,從中隨機抽取兩人臨時擔(dān)任該校藝術(shù)節(jié)的主持人,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

同步練習(xí)冊答案