如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,精英家教網(wǎng)線段BC的中垂線為y軸,建立平面直角坐標(biāo)系,y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)一輛貨運(yùn)卡車高4.5m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運(yùn)卡車還能通過隧道嗎?
分析:拋物線的問題,一般都要建立直角坐標(biāo)系,把有關(guān)長(zhǎng)度轉(zhuǎn)化為點(diǎn)的坐標(biāo),求解析式,利用解析式解決實(shí)際問題.
解答:精英家教網(wǎng)解:(1)根據(jù)題意,A(-4,2),D(4,2),E(0,6).
設(shè)拋物線的解析式為y=ax2+6(a≠0),把A(-4,2)或D(4,2)代入得
16a+6=2.
a=-
1
4

拋物線的解析式為y=-
1
4
x2+6.
【方法二】:設(shè)解析式為y=ax2+bx+c(a≠0),
代入A、D、E三點(diǎn)坐標(biāo)得
16a-4b+c=2
16a+4b+c=2
c=6

a=-
1
4
,b=0,c=6.
拋物線的解析式為y=-
1
4
x2+6.

(2)根據(jù)題意,把x=±1.2代入解析式,
得y=5.64.
∵5.64>4.5,∴貨運(yùn)卡車能通過.
(注:如果只代x=1.2,需說明對(duì)稱性;只代x=1.2沒說對(duì)稱性扣1分)

(3)根據(jù)題意,x=-0.2-2.4=-2.6或x=0.2+2.4=2.6,
把x=±2.6代入解析式,
得y=4.31.
∵4.31<4.5,
∴貨運(yùn)卡車不能通過.
點(diǎn)評(píng):求拋物線解析式可以使用一般式,頂點(diǎn)式或者交點(diǎn)式,因條件而定.運(yùn)用二次函數(shù)解題時(shí),可以給自變量(或者函數(shù))一個(gè)特殊值,求函數(shù)(自變量)的值,解答題目的問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:044

如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成.長(zhǎng)方形的長(zhǎng)為16m,寬為6m,拋物線的最高點(diǎn)C離路面的距離為8m.

(1)按如圖所示的直角坐標(biāo)系,求表示該拋線的函數(shù)表達(dá)式;

(2)一大型貨運(yùn)汽車裝載某大型設(shè)備后高為7m,寬為4m.如果該隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?

查看答案和解析>>

同步練習(xí)冊(cè)答案