(1)求證:a2+b2+3≥ab+(a+b).

(2)a,b分別取何值時,上面不等式取等號.

【解析】(1)a2+b2+3=++

≥ab++≥ab+a+b=ab+(a+b).

(2)當(dāng)且僅當(dāng)時等號成立,

即a=b=時不等式取等號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)求證
a2+
1
b2
+
a2
(ab+1)2
=|a+
1
b
-
a
ab+1
|

(2)計算
1+19992+
19992
20002
-
1
2000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

通過觀察a2+b2-2ab=(a-b)2≥0可知:
a2+b2
2
≥ab
,與此類比,當(dāng)a≥0,b≥0時,
a+b
2
ab
ab
(要求填寫),你觀察得到的這個不等式是一個重要不等式,它在證明不等式和求函數(shù)的極大值或者極小值中非常有用.請你運(yùn)用上述不等式解決下列問題:
(1)求證:當(dāng)x>0時,x+
1
x
≥2
;
(2)求證:當(dāng)x>1時,x+
1
x-1
≥3
;
(3)2x2+
1
x2+1
的最小值是
2
2
-2
2
2
-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(1)完成下面的證明:
已知:如圖1,AB∥CD∥GH,EG平分∠BEF,F(xiàn)G平分∠EFD.
求證:∠EGF=90°.
證明:∵HG∥AB,(已知) 
∴∠1=∠3. (
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等
 )
又∵HG∥CD,(已知)
∴∠2=∠4.  (
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等

∵AB∥CD,(已知)
∴∠BEF+
∠EFD
∠EFD
=180°.(
兩直線平行,同旁內(nèi)角互補(bǔ)
兩直線平行,同旁內(nèi)角互補(bǔ)

又∵EG平分∠BEF,(已知)
∴∠1=
1
2
BEH
BEH
.(
角平分線定義
角平分線定義

又∵FG平分∠EFD,(已知)
∴∠2=
1
2
EFD
EFD
.(
角平分線定義
角平分線定義

∴∠1+∠2=
1
2
∠BEH
∠BEH
+
∠EFD
∠EFD
).
∴∠1+∠2=90°.
∴∠3+∠4=90°.(
等量代換
等量代換
).即∠EGF=90°.
(2)如圖2,已知∠ACB=90°,那么∠A的余角是哪個角呢?答:
∠B
∠B
;
小明用三角尺在這個三角形中畫了一條高CD(點(diǎn)D是垂足),得到圖3,
①請你幫小明在圖中畫出這條高;
②在圖中,小明通過仔細(xì)觀察、認(rèn)真思考,找出了三對余角,你能幫小明把它們寫出來嗎?答:a
∠ACD與∠BCD
∠ACD與∠BCD
;b
∠A與∠ACD
∠A與∠ACD
;c
∠B與∠BCD
∠B與∠BCD

③∠ACB,∠ADC,∠CDB都是直角,所以∠ACB=∠ADC=∠CDB,小明還發(fā)現(xiàn)了另外兩對相等的角,請你也仔細(xì)地觀察、認(rèn)真地思考分析,試一試,能發(fā)現(xiàn)嗎?把它們寫出來,并請說明理由.
(3)在直角坐標(biāo)系中,第一次將△OAB變換成OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
①觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將△OA3B3變換成△OA4B4,則A4的坐標(biāo)為
(16,3)
(16,3)
,B4的坐標(biāo)為
(32,0)
(32,0)

②按以上規(guī)律將△OAB進(jìn)行n次變換得到△AnBn,則可知An的坐標(biāo)為
(2n,3)
(2n,3)
,Bn的坐標(biāo)為
(2n+1,0)
(2n+1,0)

③可發(fā)現(xiàn)變換的過程中A、A1、A2、…、An縱坐標(biāo)均為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c、d是正實數(shù)且滿足a2+b2=c2+d2=1,ad=bc,求證:ac+bd=1.

查看答案和解析>>

同步練習(xí)冊答案