【題目】如圖,AB是半圓O的直徑,BC是弦,點P從點A開始,沿AB向點B1 cm/s的速度移動,若AB長為10 cm,點OBC的距離為4 cm.

(1)求弦BC的長;

(2)經(jīng)過幾秒△BPC是等腰三角形?(PB不能為底邊)

【答案】1BC=6cm;(2)經(jīng)過4s5sBPC是等腰三角形.

【解析】

1)作ODBCD,易求得BC=2BD=6cm;

2)由題意知,PB=ABAP=10t,故有兩種情況,BP=BCPC=PB,分別求解即可.

1)作ODBCD,由垂徑定理知,點DBC的中點,BDBC

OBAB=5,OD=4,由勾股定理得:BD3,∴BC=2BD=6cm

2)設(shè)經(jīng)過t s后,△BPC是等腰三角形.

PB不能為底邊,∴分兩種情況討論:

①當(dāng)PC為底邊時,有BP=BC10t=6,解得:t=4s);

②當(dāng)BC為底邊時,有PC=PBP點與O點重合,此時t=5s).

綜上所述:經(jīng)過4 s5 s時,△BPC是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市為方便行人過馬路,打算修建一座高為4x(m)的過街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).

(1)請求出天橋總長和馬路寬度AB的比;

(2)若某人從A地出發(fā),橫過馬路直行(A→E→F→B)到達(dá)B地,平均速度是2.5m/s;返回時從天橋由BC→CD→DA到達(dá)A地,平均速度是1.5m/s,結(jié)果比去時多用了12.8s,請求出馬路寬度AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線BE交AC于點E,過點E作直線BE的垂線交AB于點F,⊙O是△BEF的外接圓.

(1)求證:AC是⊙O的切線;

(2)過點E作EH⊥AB于點H,求證:EF平分∠AEH;

(3)求證:CD=HF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級學(xué)生體育測試情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖荆?/span>A,B,C,D四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)

1)請把條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中D級所在的扇形的圓心角度數(shù)是多少?

3)若該校九年級有600名學(xué)生,請用樣本估計體育測試中A級學(xué)生人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點BCD都在⊙O上,過點CACBDOB延長線于點A,連接CD,且∠CDB=OBD=30°DB=cm

1)求證:AC是⊙O的切線;

2求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線ADBC邊于D.以AB上某一點O為圓心作⊙O,使⊙O經(jīng)過點A和點D

1)判斷直線BC⊙O的位置關(guān)系,并說明理由;

2)若AC=3,∠B=30°

⊙O的半徑;

設(shè)⊙OAB邊的另一個交點為E,求線段BDBE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,圓Dy軸相切于點C(0,4),與x軸相交于AB兩點,且AB6.

(1)D點的坐標(biāo)和圓D的半徑;

(2)sin ∠ACB的值和經(jīng)過C、A、B三點的拋物線對應(yīng)的函數(shù)表達(dá)式;

(3)設(shè)拋物線的頂點為F,證明直線AF與圓D相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(x>0)(x>0)的圖象分別是.設(shè)點P上,PAy軸交于點APBx軸,交于點BPAB的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題

(1)本次調(diào)查的學(xué)生有多少人?

(2)補全上面的條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是_____;

(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

同步練習(xí)冊答案