二次函數(shù)的最小值是(     )
A.1   B.-1  C.3 D.-3
D.

試題分析:本題考查二次函數(shù)最大(小)值的求法.
二次函數(shù)y=2(x+1)2-3開口向上,其頂點坐標(biāo)為(-1,-3),所以最小值是-3.
故選D.
考點:二次函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的方程
(1)當(dāng)k取何值時,方程有兩個實數(shù)根;
(2)若二次函數(shù)的圖象與軸兩個交點的橫坐標(biāo)均為整數(shù),且k為正整數(shù),求k值并用配方法求出拋物線的頂點坐標(biāo);
(3)若(2)中的拋物線與x軸交于A、B兩點,與y軸交于C點.將拋物線向上平移n個單位,使平移后得到的拋物線的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x²-4x+3.
(1)該拋物線的對稱軸是       ,頂點坐標(biāo)               ;
(2)將該拋物線向上平移2個單位長度,再向左平移3個單位長度得到新的二次函數(shù)圖像,請寫出相應(yīng)的解析式,并用列表,描點,連線的方法畫出新二次函數(shù)的圖像;
x

 
 
 
 
 

y

 
 
 
 
 

 

(3)新圖像上兩點A(x1,y1),B(x2,y2),它們的橫坐標(biāo)滿足<-2,且-1<<0,試比較y1,y2,0三者的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在2014年“元旦”前夕,某商場試銷一種成本為30元的文化衫,經(jīng)試銷發(fā)現(xiàn),若每件按34元的價格銷售,每天能賣出36件;若每件按39元的價格銷售,每天能賣出21件.假定每天銷售件數(shù)y(件)是銷售價格x(元)的一次函數(shù).
(1)直接寫出y與x之間的函數(shù)關(guān)系式y(tǒng)=                      
(2)在不積壓且不考慮其他因素的情況下,每件的銷售價格定為多少元時,才能使每天獲得的利潤P最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線和直線. 當(dāng)y1>y2時,x的取值范圍是(     )
A.0<x<2B.x<0或x>2C.x<0或x>4D.0<x<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2+bx+c過點A(1,0),C(0,﹣3).

(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點P使△ABP的面積為10,請求出出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在同一坐標(biāo)系中,二次函數(shù)的圖象都具有的特征是       (只寫一條).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜邊AB上一動點(不與點A、B重合),PQ⊥AB交△ABC的直角邊于點Q,設(shè)AP為x,△APQ的面積為y,則下列圖象中,能表示y關(guān)于x的函數(shù)關(guān)系的圖象大致是( 。

A.  B.  C.  D.
B.  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,拋物線)與軸的兩個交點分別為,當(dāng)時,的取值范圍是       

查看答案和解析>>

同步練習(xí)冊答案