【題目】問題:如圖①,在直角三角形中,,于點(diǎn),可知(不需要證明);

(1)探究:如圖②,,射線在這個(gè)角的內(nèi)部,點(diǎn)的邊、上,且,于點(diǎn),于點(diǎn).證明:

(2)證明:如圖③,點(diǎn)的邊、上,點(diǎn)、內(nèi)部的射線上,分別是、的外角。已知,.求證:;

(3)應(yīng)用:如圖④,在中,.點(diǎn)在邊上,,點(diǎn)在線段上,.若的面積為15,則的面積之和為________.

【答案】1)見解析;(2)見解析;(35.

【解析】

1)利用AAS證明即可;

2)利用AAS證明即可;

3)先利用AAS證明△ABE≌△CAF,然后求△ABD的面積即可.

解:(1)∵,,

∴∠DBA+∠BAD=90°,∠BAD+∠FAC=90°

∴∠DBA=FAC

在△ABD和△CAF中,

;

2)∵,∠1=∠EBA+∠EAB,∠BAC=EAB+∠FAC

∴∠BEA=180°-∠1=180°-∠2=AFC,∠EBA=FAC

在△ABE和△CAF

.

3)∵,∠1=∠EBA+∠EAB,∠BAC=EAB+∠FAC

∴∠BEA=180°-∠1=180°-∠2=AFC,∠EBA=FAC

在△ABE和△CAF

∴△ABE的面積=△CAF的面積

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式:y=2x2-3xz+5;y=3-2x+5x2;y=+2x-3;y=ax2+bx+c;y=(2x-3)(3x-2)-6x2;y=(m2+1)x2+3x-4(m為常數(shù));y=m2x2+4x-3(m為常數(shù))是二次函數(shù)的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段EF,BEFD之間的數(shù)量關(guān)系.

小明同學(xué)探究的方法是:延長FD到點(diǎn)G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,

他的結(jié)論是   (直接寫結(jié)論,不需證明);

(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,EF分別是BC,CD上的點(diǎn),且∠EAF是∠BAD的二分之一,上述結(jié)論是否仍然成立,并說明理由.

(3)如圖3,四邊形ABCD是邊長為5的正方形,∠EBF=45°,直接寫出三角形DEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,AE平分∠BAC,ADBCBC的延長線于點(diǎn)D

1)若∠B30°,∠ACB100°,求∠EAD的度數(shù);

2)若∠Bα,∠ACBβ,試用含α、β的式子表示∠EAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,已知線段AD平分∠BACBCD,∠B=62°,∠C=58°.

(1)用尺規(guī)作出線段AD,并求∠ADB的度數(shù);

(2)若DE⊥AC于點(diǎn)E,把圖形補(bǔ)充完整并求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1ADBC的一張紙條,按圖1→2→3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE18°,則圖2中∠AEF的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形的紙片ABCD中,AD3cm,AB4cm,把該紙片沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,AEDC于點(diǎn)F

1)圖中有等腰三角形嗎?說明理由.

2)求重疊部分(即ACF)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,EBC延長線上一點(diǎn).

1)請(qǐng)你添加平行線證明:∠ACE=∠ABC+A

2)如圖2,若點(diǎn)D是線段AC上一點(diǎn),且DFBC,作DG平分∠BDFABG,DH平分∠GDCBCH,且∠BDC比∠ACB20°,求∠GDH的度數(shù).

3)如圖3,已知EBC延長線上一點(diǎn),D是線段AC上一點(diǎn),連接DE,若∠ABC的平分線與∠ADE的平分線相交于點(diǎn)P,請(qǐng)你判斷∠P、∠A、∠E的數(shù)量關(guān)系并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,均是等邊三角形,、分別與交于點(diǎn)、,且、在同一直線上,有如下結(jié)論:①;②;③;④,其中正確結(jié)論有______

查看答案和解析>>

同步練習(xí)冊(cè)答案