如圖所示,∠AOB=30°,OP平分∠AOB,PC∥OA,PD⊥OA于D,若PC=3,則PD=________.

1.5
分析:作PE⊥OB于E,根據(jù)平行線的性質(zhì)及角平分線的性質(zhì)可求得OC=PC,根據(jù)直角三角形的性質(zhì)求得PE的長,根據(jù)角平分線上的點(diǎn)到角兩邊的距離相等,得到PE=PD,從而也就得到了PD的長.
解答:解:作PE⊥OB于E,
∵PC∥OD,
∴∠CPO=∠POD.
∵OP平分∠AOB,
∴∠CPO=∠COP=15°.
∴∠BCP=30°.
∴PE=PC=1.5.
∵PD⊥OA,PE⊥OB,
∴PD=PE=1.5.
故填1.5.
點(diǎn)評(píng):本題考查了平行線的性質(zhì)、角平分線的性質(zhì)及等腰三角形的性質(zhì);輔助線的作出是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,∠AOB是平角,OM、ON分別是∠AOC、∠BOD的平分線.
(1)已知∠AOC=30°,∠BOD=60°,求∠MON的度數(shù);
(2)如果只已知“∠COD=90°”,你能求出∠MON的度數(shù)嗎?如果能,請(qǐng)求出;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

74、如圖所示,∠AOB=70°,∠COD=80°,求∠AOD-∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△AOB為正三角形,點(diǎn)A、B的坐標(biāo)分別為A(2,a),B(b,0),求a,b的值及△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•邵東縣模擬)在平面直角坐標(biāo)系中,如圖所示,△AOB是邊長為2的等邊三角形,將△AOB繞著點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)得到△DCB,使得點(diǎn)D落在x軸的正半軸上,連接OC,AD.
(1)求證:OC=AD;
(2)求OC的長;
(3)求過A、D兩點(diǎn)的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,∠AOB=30°,OC平分∠AOB,P為OC上任意一點(diǎn),PD∥OA交OB于點(diǎn)D,PE⊥OA于點(diǎn)E,若PE=2cm,則PD=
4
4
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案