【題目】化簡(jiǎn)與計(jì)算
(1)( ﹣2)0+( 1+4cos30°﹣|﹣ |.
(2)先化簡(jiǎn),再求值: ÷( ﹣a﹣2),其中a= ﹣3.

【答案】
(1)解:原式=1+3+2 ﹣2 =4
(2)解:原式= ÷ =﹣ =﹣ ,

當(dāng)a= ﹣3時(shí),原式=﹣


【解析】(1)原式第一項(xiàng)利用零指數(shù)冪法則計(jì)算,第二項(xiàng)利用負(fù)整數(shù)指數(shù)冪法則計(jì)算,第三項(xiàng)利用特殊角的三角函數(shù)值計(jì)算,最后一項(xiàng)利用絕對(duì)值的代數(shù)意義化簡(jiǎn),計(jì)算即可得到結(jié)果;(2)原式括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分得到最簡(jiǎn)結(jié)果,把a(bǔ)的值代入計(jì)算即可求出值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半圓O的直徑AC=2 ,點(diǎn)B為半圓的中點(diǎn),點(diǎn)D在弦AB上,連結(jié)CD,作BF⊥CD于點(diǎn)E,交AC于點(diǎn)F,連結(jié)DF,當(dāng)△BCE和△DEF相似時(shí),BD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,DA∥BC,tan∠DBA= ,若CD=2 ,則線(xiàn)段BC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(yíng)、B兩點(diǎn),交y軸于點(diǎn)C,且B(1,0),C(0,3),將△BOC繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°,C點(diǎn)恰好與A重合.

(1)求該二次函數(shù)的解析式;
(2)若點(diǎn)P為線(xiàn)段AB上的任一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥AC,交BC于點(diǎn)E,連結(jié)CP,求△PCE面積S的最大值;
(3)設(shè)拋物線(xiàn)的頂點(diǎn)為M,Q為它的圖象上的任一動(dòng)點(diǎn),若△OMQ為以O(shè)M為底的等腰三角形,求Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲轉(zhuǎn)盤(pán)被分成 3 個(gè)面積相等的扇形,乙轉(zhuǎn)盤(pán)被分成4個(gè)面積相等的扇形,每一個(gè)扇形都標(biāo)有相應(yīng)的數(shù)字.同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,設(shè)甲轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線(xiàn)上時(shí),重轉(zhuǎn),直到指針指向一個(gè)區(qū)域?yàn)橹梗?
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表格的方法,求點(diǎn)(x,y)落在第二象限內(nèi)的概率;
(2)直接寫(xiě)出點(diǎn)(x,y)落在函數(shù)y=﹣ 圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)與計(jì)算
(1)( ﹣2)0+( 1+4cos30°﹣|﹣ |.
(2)先化簡(jiǎn),再求值: ÷( ﹣a﹣2),其中a= ﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,則梯形ABCD的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E在BC邊上,且CE:BC=2:3,AC與DE相交于點(diǎn)F,若SAFD=9,則SEFC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC紙片中,∠ACB=90°,AC=6,BC=8,沿過(guò)其中一個(gè)頂點(diǎn)的直線(xiàn)把△ABC剪開(kāi),若剪得的兩個(gè)三角形中僅有一個(gè)是等腰三角形,那么這個(gè)等腰三角形的面積不可能是(
A.14.4
B.19.2
C.18.75
D.17

查看答案和解析>>

同步練習(xí)冊(cè)答案