如圖,在△ABC中,AB=AC,∠C=72°,⊙O過AB兩點(diǎn)且與BC切于B,與AC交于D,連接BD,若BC=-1,則AC=   
【答案】分析:利用切割線定理,可以求出AC的值.
解答:解:∵AB=AC,∠C=72°,BC是⊙O的切線,
∴∠CBD=∠BAC=36°,
∴∠ABD=36°,
∴∠BDC=∠BCD=72°,
∴AD=BD=BC;
又∵BC是切線,
∴BC2=CD•AC,
∴BC2=(AC-BC)•AC(設(shè)AC=x),則可得到:(x-2=,
解得:x1=2,x2=(x2<0不合題意,舍去).
∴AC=2.
點(diǎn)評(píng):此題運(yùn)用了切線的性質(zhì)定理,還有切割線定理,以及解一元二次方程的知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案