【題目】在平行四邊形ABCD中,點(diǎn)A1 , A2 , A3 , A4和C1 , C2 , C3 , C4分別AB和CD的五等分點(diǎn),點(diǎn)B1 , B2和D1 , D2分別是BC和DA的三等分點(diǎn),已知四邊形A4B2C4D2的面積為1,則平行四邊形ABCD面積為( 。

A.2
B.
C.
D.15

【答案】C
【解析】解:

設(shè)平行四邊形ABCD的面積是S,設(shè)AB=5a,BC=3b.AB邊上的高是3x,BC邊上的高是5y.
則S=5a3x=3b5y.即ax=by=
△AA4D2與△B2CC4全等,B2C=BC=b,B2C邊上的高是5y=4y.
則△AA4D2和△B2CC4的面積是2by=
同理△D2C4D與△A4BB2的面積是
則四邊形A4B2C4D2的面積是S﹣= , 即=1,
解得S=
故選C.
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用四舍五入法按要求取近似數(shù):2.175萬(精確到千位)是_____萬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點(diǎn)M,P,CD交BE于點(diǎn)Q,連接PQ,下面結(jié)論: ①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④PQ∥AC.
其中結(jié)論正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點(diǎn)E是AB的中點(diǎn),試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式2x2﹣3x﹣6,它的常數(shù)項(xiàng)是( 。

A. ﹣6 B. 6 C. 2,﹣3,﹣6 D. ﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】省教育廳決定在全省中小學(xué)開展關(guān)注校車、關(guān)愛學(xué)生為主題的交通安全教育宣傳周活動(dòng),某中學(xué)為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生,將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖(如圖所示),請(qǐng)根據(jù)圖中提供的信息,解答下列問題.

(1)m= %,這次共抽取 名學(xué)生進(jìn)行調(diào)查;并補(bǔ)全條形圖;

(2)在這次抽樣調(diào)查中,采用哪種上學(xué)方式的人數(shù)最多?

(3)如果該校共有1500名學(xué)生,請(qǐng)你估計(jì)該校騎自行車上學(xué)的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解關(guān)于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是(
A.(x﹣1)2=4
B.(x+1)2=4
C.(x﹣1)2=16
D.(x+1)2=16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市“五一”共接待游客約3020000人次,“3020000”用科學(xué)記數(shù)法可表示為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E是對(duì)角線BD延長(zhǎng)線上一點(diǎn),AE=BD.將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(0°<α<360°)得到△ABE′,點(diǎn)B、E的對(duì)應(yīng)點(diǎn)分別為B′、E′.

(1)如圖1,當(dāng)α=30°時(shí),求證:BC=DE;

(2)連接BEDE′,當(dāng)BE=DE′時(shí),請(qǐng)用圖2求α的值;

(3)如圖3,點(diǎn)PAB的中點(diǎn),點(diǎn)Q為線段BE′上任意一點(diǎn),試探究,在此旋轉(zhuǎn)過程中,線段PQ長(zhǎng)度的取值范圍為   

查看答案和解析>>

同步練習(xí)冊(cè)答案