分析 先根據(jù)△ABC是等邊三角形,BD⊥AC可知∠DBE=30°,∠ACB=60°,再根據(jù)CE=CD可知∠CDE=∠E,由三角形外角的性質(zhì)可知∠ACB=∠E+∠CDE=60°,故∠E=30°,故可得出∠E=∠DBE=30°,故BD=DE,再根據(jù)DF⊥BE可知BF=EF,即BF=$\frac{1}{2}$BE,由∠DFC=90°,∠ACB=60°,得到∠FDC=30°,根據(jù)直角三角形的性質(zhì)得到CF=$\frac{1}{2}$CD=$\frac{1}{2}$CE,推出CF=$\frac{1}{3}$EF,即可得到結(jié)論.
解答 證明:∵△ABC是等邊三角形,BD⊥AC,
∴∠DBE=30°,∠ACB=60°,
∵CE=CD,
∴∠CDE=∠E,
∵∠ACB是△CDE的外角,
∴∠ACB=∠E+∠CDE=60°,
∴∠E=30°,
∴∠E=∠DBE=30°,
∴BD=DE,
∴△BDE是等腰三角形,
∵DF⊥BE,
∴BF=EF,即BF=$\frac{1}{2}$BE,
∵∠DFC=90°,∠ACB=60°,
∴∠FDC=30°,
∴CF=$\frac{1}{2}$CD=$\frac{1}{2}$CE,
∴CF=$\frac{1}{3}$EF,
∴CF=$\frac{1}{6}$BE.
點(diǎn)評(píng) 本題考查的是等邊三角形的性質(zhì)及三角形外角的性質(zhì),根據(jù)題意得出△BDE是等腰三角形是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$m2 | B. | 1m2 | C. | $\frac{3}{2}$m2 | D. | 3m2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com