已知:如圖①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2),解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥BC;
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時(shí)刻t,使四邊形PQP′C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng);若不存在,說(shuō)明理由.
考點(diǎn):
相似形綜合題.
專題:
壓軸題.
分析:
(1)當(dāng)PQ∥BC時(shí),我們可得出三角形APQ和三角形ABC相似,那么可得出關(guān)于AP,AB,AQ,AC的比例關(guān)系,我們觀察這四條線段,已知的有AC,根據(jù)P,Q的速度,可以用時(shí)間t表示出AQ,BP的長(zhǎng),而AB可以用勾股定理求出,這樣也就可以表示出AP,那么將這些數(shù)值代入比例關(guān)系式中,即可得出t的值.
(2)求三角形APQ的面積就要先確定底邊和高的值,底邊AQ可以根據(jù)Q的速度和時(shí)間t表示出來(lái).關(guān)鍵是高,可以用AP和∠A的正弦值來(lái)求.AP的長(zhǎng)可以用AB﹣BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ邊上的高后,就可以得出y與t的函數(shù)關(guān)系式.
(3)如果將三角形ABC的周長(zhǎng)和面積平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的長(zhǎng),那么可以求出此時(shí)t的值,我們可將t的值代入(2)的面積與t的關(guān)系式中,求出此時(shí)面積是多少,然后看看面積是否是三角形ABC面積的一半,從而判斷出是否存在這一時(shí)刻.
(4)我們可通過(guò)構(gòu)建相似三角形來(lái)求解.過(guò)點(diǎn)P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是個(gè)矩形,解題思路:通過(guò)三角形BPN和三角形ABC相似,得出關(guān)于BP,PN,AB,AC的比例關(guān)系,即可用t表示出PN的長(zhǎng),也就表示出了MC的長(zhǎng),要想使四邊形PQP'C是菱形,PQ=PC,根據(jù)等腰三角形三線合一的特點(diǎn),QM=MC,這樣有用t表示出的AQ,QM,MC三條線段和AC的長(zhǎng),就可以根據(jù)AC=AQ+QM+MC來(lái)求出t的值.求出了t就可以得出QM,CM和PM的長(zhǎng),也就能求出菱形的邊長(zhǎng)了.
解答:
解:(1)在Rt△ABC中,AB=,
由題意知:AP=5﹣t,AQ=2t,若PQ∥BC,則△APQ∽△ABC,
∴=,∴=,
∴t=.所以當(dāng)t=時(shí),PQ∥BC.(2)過(guò)點(diǎn)P作PH⊥AC于H.
∵△APH∽△ABC,
∴=,
∴=,
∴PH=3﹣t,
∴y=×AQ×PH=×2t×(3﹣t)=﹣t2+3t.(3)若PQ把△ABC周長(zhǎng)平分,則AP+AQ=BP+BC+CQ.
∴(5﹣t)+2t=t+3+(4﹣2t),解得t=1.
若PQ把△ABC面積平分,則S△APQ=S△ABC,即﹣+3t=3.
∵t=1代入上面方程不成立,
∴不存在這一時(shí)刻t,使線段PQ把Rt△ACB的周長(zhǎng)和面積同時(shí)平分.(4)過(guò)點(diǎn)P作PM⊥AC于M,PN⊥BC于N,
若四邊形PQP'C是菱形,那么PQ=PC.
∵PM⊥AC于M,
∴QM=CM.
∵PN⊥BC于N,易知△PBN∽△ABC.
∴=,∴=,
∴PN=,
∴QM=CM=,
∴t+t+2t=4,解得:t=.
∴當(dāng)t=s時(shí),四邊形PQP'C是菱形.
此時(shí)PM=3﹣t=cm,CM=t=cm,
在Rt△PMC中,PC===cm,
∴菱形PQP′C邊長(zhǎng)為cm.
點(diǎn)評(píng):
本題圖形結(jié)合的動(dòng)態(tài)題,是近幾年考試熱點(diǎn),同時(shí)考查三角形相似知識(shí),是一道很好的綜合題.本題亮點(diǎn)是巧妙結(jié)合圖形綜合考查不同知識(shí)點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:如圖1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).解答下列問(wèn)題:
1.①.當(dāng)t為何值時(shí),PQ∥BC?
2.②.設(shè)⊿AQP的面積為y(cm),求y與t之間的函數(shù)關(guān)系式;
3.③.是否存在某一時(shí)刻t,使線段PQ恰好把Rt⊿ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由;
4.④.如圖2,連接PC,并把⊿PQC沿QC翻折,得到四邊形PQC,那么是否存在某時(shí)刻t,使四邊形PQC為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010年重慶市萬(wàn)州區(qū)初中數(shù)學(xué)教師專業(yè)知識(shí)競(jìng)賽試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省九年級(jí)上學(xué)期10月月考數(shù)學(xué)卷 題型:解答題
已知:如圖1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).解答下列問(wèn)題:
1.①.當(dāng)t為何值時(shí),PQ∥BC?
2.②.設(shè)⊿AQP的面積為y(cm),求y與t之間的函數(shù)關(guān)系式;
3.③.是否存在某一時(shí)刻t,使線段PQ恰好把Rt⊿ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由;
4.④.如圖2,連接PC,并把⊿PQC沿QC翻折,得到四邊形PQC,那么是否存在某時(shí)刻t,使四邊形PQC為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng);若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com