【題目】我們知道某些代數(shù)恒等式可用一些卡片拼成的圖形面積來解釋,例如A可以用來解釋,實際上利用一些卡片拼成的圖形面積也可以對某些二次三項式進(jìn)行因式分解

1B可以解釋的代數(shù)恒等式是 ;

2現(xiàn)有足夠多的正方形和矩形卡片如圖C),畫出一個用若干張1號卡片、2號卡片和3號卡片拼成的矩形每兩塊紙片之間既不重疊,也無空隙,拼出的圖中必須保留拼圖的痕跡),使該矩形的面積為,并利用你所畫的圖形面積對進(jìn)行因式分解

【答案】1;(2

【解析】試題分析:(1)根據(jù)圖所示,可以得到長方形長為2a,寬為a+b,面積為:2a(a+b),或四個小長方形和正方形面積之和

(2)①根據(jù)題意,可以畫出相應(yīng)的圖形然后完成因式分解.

試題解析:(1

(2)①根據(jù)題意,可以畫出相應(yīng)的圖形,如圖所示

因式分解為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB30,∠AOB 內(nèi)有一定點 P,且 OP12,在 OA 上有一動點 Q,OB 上有 一動點 R。若PQR 周長最小,則最小周長是( )

A. 6 B. 12 C. 16 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7x24x+1x22+6x中,7x2_____是同類項,6x_____是同類項,﹣2____是同類項.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分) 先學(xué)后教課題組對學(xué)生參與小組合作的深度和廣度進(jìn)行評價,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項課題組隨機抽取了若干名初中學(xué)生的參與情況,繪制了如圖兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息解答下列問題:

(1)在這次評價中一共抽查了______名學(xué)生;

(2)請將條形統(tǒng)計圖補充完整;

(3)求出扇形統(tǒng)計圖中,主動質(zhì)疑所對應(yīng)扇形的圓心角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的兩邊長分別為57,則第三邊長不可能是( 。

A.2B.3C.10D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|3x-6|+y+32=0,則3x+2y的值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師每天從甲地到乙地鍛煉身體,甲、乙兩地相距14千米,已知他步行的平均速度為80米/分,跑步的平均速度為200米/分,若他要在不超過10分鐘的時間內(nèi)從甲地到達(dá)乙地,至少需要跑步多少分鐘?設(shè)他需要跑步x分鐘,則列出的不等式(

A.80x+200(10-x)≤1.4B.80x+200(10-x)≤1400

C.200x+80(10-x)≥1.4D.200x+80(10-x)≥1400

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】提出問題:如圖,在四邊形ABCD中,PAD邊上任意一點,

△PBC△ABC△DBC的面積之間有什么關(guān)系?

探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:

1)當(dāng)AP=AD時(如圖):

AP=AD,ABPABD的高相等,

SABP=SABD

PD=ADAP=ADCDPCDA的高相等,

SCDP=SCDA

∴SPBC=S四邊形ABCD﹣SABP﹣SCDP

=S四邊形ABCDSABDSCDA

=S四邊形ABCDS四邊形ABCDSDBCS四邊形ABCDSABC

=SDBC+SABC

2)當(dāng)AP=AD時,探求SPBCSABCSDBC之間的關(guān)系,寫出求解過程;

3)當(dāng)AP=AD時,SPBCSABCSDBC之間的關(guān)系式為:   ;

4)一般地,當(dāng)AP=ADn表示正整數(shù))時,探求SPBCSABCSDBC之間的關(guān)系,寫出求解過程;

問題解決:當(dāng)AP=AD0≤≤1)時,SPBCSABCSDBC之間的關(guān)系式為:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB2,AD4MAD的中點,點E是線段AB上一動點(可以運動到點A和點B),連接EM并延長交線段CD的延長線于點F

(1) 如圖1,求證:AEDF; EM=3,∠FEA=45°,過點MMG⊥EF交線段BC于點G,請直接寫出GEF的的形狀,并求出點FAB邊的距離;

2改變平行四邊形ABCD∠B的度數(shù),當(dāng)∠B=90°可得到矩形ABCD如圖2,請判斷GEF的形狀,并說明理由;

3(2)的條件下,取MG中點P,連接EP,點P隨著點E的運動而運動,當(dāng)點E在線段AB上運動的過程中,請直接寫出EPG的面積S的范圍.

查看答案和解析>>

同步練習(xí)冊答案