如圖(1)中,△和△都是等腰直角三角形,∠和∠都是直角,點上,△繞著點經(jīng)過逆時針旋轉(zhuǎn)后能夠與△重合,再將圖(1)作為“基本圖形”繞著點經(jīng)過逆時針旋轉(zhuǎn)得到圖(2).兩次旋轉(zhuǎn)的角度分別為(     )

A.45°,90°            B.90°,45°       C.60°,30°          D.30°,60°

A  解析:∵ △和△都是等腰直角三角形,∴ ∠.

又∵ △繞著點沿逆時針旋轉(zhuǎn)度后能夠與△重合,∴ 旋轉(zhuǎn)中心為點,旋轉(zhuǎn)角度為45°,即45.若把圖(1)作為“基本圖形”繞著點沿逆時針旋轉(zhuǎn)度可得到圖(2),則454590,故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,梯形ABCD中,∠ABC和∠DCB的平分線相交于梯形中位線EF上一點P,若EF=3,則梯形ABCD的周長為
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,精英家教網(wǎng)交AC于F,過點O作OD⊥AC于D.下列四個結(jié)論:
①∠BOC=90°+
12
∠A;
②以E為圓心,BE為半徑的圓與以F為圓心,CF為半徑的圓外切;
③設(shè)OD=m,AE+AF=n,則S△AEF=mn;
④EF不能成為△ABC的中位線.
其中正確的結(jié)論是
 
.(把你認為正確結(jié)論的序號都填上,答案格式如:“①,②,③,④”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,在△ABC中,∠ABC和∠ACB的平分線交于點O,過點O作EF∥BC,交AB于E、交AC于F.
(1)請寫出圖中的一個等腰三角形,并說明理由;
(2)若AB=8,AC=6,求△AEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D.下列四個結(jié)論:
①EF是△ABC的中位線.
②以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切;
③設(shè)OD=m,AE+AF=2n,則S△AEF=mn;
④∠BOC=90°+
12
∠A;
其中正確的結(jié)論是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長為
9
9

查看答案和解析>>

同步練習(xí)冊答案