在等腰梯形ABCD中,AD∥BC,AB=DC,且BC=2.以CD為直徑作⊙O1交AD于點E,過點E作EF⊥AB于點F.建立如圖所示的平面直角坐標系,已知A、B兩點坐標分別為A(2,0)、B(0,).
【小題1】求C、D兩點的坐標;
【小題2】求證:EF為⊙O1的切線
【小題3】線段CD上是否存在點P,使以點P為圓心,PD為半徑的⊙P與y軸相切.如果存在,請求出P點坐標;如果不存在,請說明理由.
【小題1】連結(jié)CE
∵CD是⊙O1的直徑 ∴CE⊥x軸
∴在等腰梯形ABCD中,EO=BC=2,
CE=BO=,DE=AO=2∴DO=4,
故C()D() (3分)
【小題2】連結(jié)O1E,在⊙O1中,O1D= O1E,∠O1DE=∠1,
又在等腰梯形ABCD中 ∠CDA=∠BAD
∴∠1=∠BAD ∴O1E∥BA
又∵EF⊥BA ∴O1E⊥EF
∵E在⊙O1上 ∴EF為⊙O1的切線. (6分)
【小題3】存在滿足條件的點P.
作PH⊥OD于H,作PM⊥y軸于M.
則當PM=PD時,⊙P于y軸相切.
在矩形PHOM中,OH=PM
設OH="m," 則PM="PD=m," DH=4-m
∵tan∠OAB=
∴∠OAB=60°
∴∠PDH=∠OAB=60°
在Rt△PDH中,cos∠PDH=, 即: , m=,
則PH=DH·tan∠PDH="(4-m)"
∴ 滿足條件的P點坐標為() (12分)
解析
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com