如圖,△ABC中,∠A=36°,AB=AC,AB的垂直平分線MN交AC于點D,則下列結(jié)論中成立的有(  )
①∠C=72°;②BD是∠ABC的平分線;③△ABD是等腰三角形;④△BCD∽△ABC.
分析:由△ABC中,∠A=36°,AB=AC,根據(jù)等腰三角形的性質(zhì)與三角形內(nèi)角和定理,即可求得∠C的度數(shù);又由線段垂直平分線的性質(zhì),易證得△ABD是等腰三角形,繼而可求得∠ABD與∠DBC的度數(shù),證得BD是∠ABC的平分線,然后由∠DBC=∠A=36°,∠C是公共角,證得△BCD∽△ABC.
解答:解:∵△ABC中,∠A=36°,AB=AC,
∴∠ABC=∠C=
180°-∠A
2
=72°,
故①正確;
∵DM是AB的垂直平分線,
∴AD=BD,
∴△ABD是等腰三角形;
故③正確;
∴∠ABD=∠A=36°,
∴∠DBC=∠ABC-∠ABD=36°,
∴∠ABD=∠DBC,
∴BD是∠ABC的平分線;
故②正確;
∵∠DBC=∠A=36°,∠C是公共角,
∴△BCD∽△ABC.
故④正確.
故選D.
點評:此題考查了相似三角形的判定、等腰三角形的判定與性質(zhì)以及線段垂直平分線的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案