【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,DC=12,AD=13,求四邊形ABCD的面積.
【答案】四邊形ABCD的面積為36.
【解析】
連接AC,然后根據(jù)勾股定理求出AC的長度,再根據(jù)勾股定理逆定理計算出∠ACD=90°,然后根據(jù)四邊形ABCD的面積=△ABC的面積+△ACD的面積,列式進行計算即可得解.
連接AC,
∵∠ABC=90°,AB=3,BC=4,
∴AC==5,
∵DC=12,AD=13,
∴AC2+DC2=52+122=25+144=169,
AD2=132=169,
∴AC2+DC2=AD2,
∴△ACD是∠ACD=90°的直角三角形,
四邊形ABCD的面積=△ABC的面積+△ACD的面積,
=ABBC+ACCD
=×3×4+×5×12
=6+30
=36.
科目:初中數(shù)學 來源: 題型:
【題目】某自行車廠一周計劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因實際每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn) 輛;
(2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;
(3)該廠實行計劃工資制,每輛車元,超額完成任務每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家2002年四個季度的用電量如下:
季度名稱 | 用電量(單位:千瓦時) |
第一季度 | 250 |
第二季度 | 150 |
第三季度 | 400 |
第四季度 | 200 |
其中各種電器用電量如下表:
各種電器 | 用電量(單位:千瓦時) |
空調(diào) | 250 |
冰箱 | 400 |
照明 | 100 |
彩電 | 150 |
其他 | 100 |
小明根據(jù)上面的數(shù)據(jù)制成下面的統(tǒng)計圖.
根據(jù)以上三幅統(tǒng)計圖回答:
(1)從哪幅統(tǒng)計圖中可以看出各個季度用電量變化情況?
(2)從哪幅統(tǒng)計圖中可以看出冰箱用電量超過總用電量的?
(3)從哪幅統(tǒng)計圖中可以清楚地看出空調(diào)的用電量?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據(jù)健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD中,∠B=60°,點E,F分別是BC,CD上的兩個動點,且始終保持∠AEF=60°.
(1)試判斷△AEF的形狀并說明理由;
(2)若菱形的邊長為2,求△ECF周長的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次活動中,主辦方共準備了3600盆甲種花和2900盆乙種花,計劃用甲、乙兩種花搭造出A、B兩種園藝造型共50個,搭造要求的花盆數(shù)如下表所示:
請問符合要求的搭造方案有幾種?請寫出具體的方案。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com