【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點F,AG平分∠DAC.給出下列結論:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正確的結論是_____.
【答案】①②④
【解析】
①連接EG.根據(jù)等角的余角相等即可得到結果,故①正確;②由BE、AG分別是∠ABC、∠DAC的平分線.得到∠ABF=∠EBD.由于∠AFE=∠FAB+∠FBA,∠AEG=∠C+∠EBD,得到∠AFE=∠AEF,根據(jù)等腰三角形的性質可得②正確;③如果∠EBC=∠C,則∠C=∠ABC,由于∠BAC=90°那么∠C=30°,但∠C≠30°,故③錯誤;④證明△ABN≌△GBN,得到AN=GN,證出四邊形AFGE是平行四邊形,得到GF∥AE,故④正確;⑤由AE=AF,AE=FG,而△AEF不是等邊三角形,得到EF≠AE,于是EF≠FG,故⑤錯誤.
①連接EG.
∵∠BAC=90°,AD⊥BC.
∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.
∴∠ABC=∠DAC,∠BAD=∠C,故①正確;
②∵BE、AG分別是∠ABC、∠DAC的平分線,
∴∠ABF=∠EBD.
∵∠AFE=∠FAB+∠FBA,∠AEG=∠C+∠EBD,
∴∠AFE=∠AEF.
∴AF=AE,故②正確;
③如果∠EBC=∠C,則∠C=∠ABC,
∵∠BAC=90°,
那么∠C=30°,但∠C≠30°,故③錯誤;
④∵AG是∠DAC的平分線,
∴AN⊥BE,FN=EN,
在△ABN與△GBN中,∵
∴△ABN≌△GBN.
∴AN=GN.
∴四邊形AFGE是平行四邊形.
∴GF∥AE.
即GF∥AC.故④正確;
⑤∵AE=AF,AE=FG,
而△AEF不是等邊三角形,
∴EF≠AE.
∴EF≠FG,故⑤錯誤.
故答案為:①②④.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,AC=8cm,BC=6cm,M 在 AC上,且AM=6cm,過點 A(與 BC 在 AC 同側)作射線 AN⊥AC,若動點 P 從點 A 出發(fā),沿射線 AN 勻速運動,運動速度為 1cm/s,設點 P 運動時間為 t 秒.
(1)經過 秒時,Rt△AMP 是等腰直角三角形?
(2)經過幾秒時,PM⊥MB?
(3)經過幾秒時,PM⊥AB?
(4)當△BMP 是等腰三角形時,直接寫出 t 的所有值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.2元,每天可多售出40斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,AC=20,點D與點A關于y軸對稱,點E、F分別是線段AD、AC上的動點(點E不與點A、D重合),且∠CEF=∠ACB.
(1)直接寫出BC的長是 , 點D的坐標是;
(2)證明:△AEF與△DCE相似;
(3)當△EFC為等腰三角形時,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將1、、、按如圖方式排列.若規(guī)定(m,n)表示第m排從左向右第n個數(shù),則(7,3)所表示的數(shù)是__;(5,2)與(20,17)表示的兩數(shù)之積是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個正整數(shù)能表示成兩個連續(xù)偶數(shù)的平方差,那么這個正整數(shù)為“神秘數(shù)”.
如:
因此,4,12,20這三個數(shù)都是神秘數(shù).
(1)28和2012這兩個數(shù)是不是神秘數(shù)?為什么?
(2)設兩個連續(xù)偶數(shù)為和(其中為非負整數(shù)),由這兩個連續(xù)偶數(shù)構造的神秘數(shù)是4的倍數(shù),請說明理由.
(3)兩個連續(xù)奇數(shù)的平方差(取正數(shù))是不是神秘數(shù)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為,點B在第一象限內,點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周.
寫出點B的坐標______
當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.
在移動過程中,當點P到x軸距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線 L 過點C,點 A,B 在直線 L 同側,BD⊥L, AE⊥L,垂足分別為D,E
求證:△AEC≌△CDB
(2)類比探究:如圖 2,Rt△ABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點 A 逆時針旋轉 90°至 AB’, 連接B’C,求△AB’C 的面積
(3)拓展提升:如圖 3,等邊△EBC 中,EC=BC=3cm,點 O 在 BC 上且 OC=2cm,動點 P 從點 E 沿射線EC 以 1cm/s 速度運動,連接 OP,將線段 OP 繞點O 逆時針旋轉 120°得到線段 OF,設點 P 運動的時間為t 秒。
當t= 秒時,OF∥ED
若要使點F 恰好落在射線EB 上,求點P 運動的時間t
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習解直角三角形以后,重慶八中數(shù)學興趣小組測量了旗桿的高度.如圖,某一時刻,旗桿AB的影子一部分落在平臺上的影長BC為6米,落在斜坡上的影長CD為4米,AB⊥BC,同一時刻,光線與旗桿的夾角為37°,斜坡的坡角為30°,旗桿的高度AB約為( )米.(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.73)
A.10.61
B.10.52
C.9.87
D.9.37
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com