【題目】如圖,在△ABC中,∠A=60°,點D是BC邊的中點,DE⊥BC,∠ABC的角平分線BF交DE于△ABC內一點P,連接PC.

(1)若∠ACP=24°,求∠ABP的度數(shù);
(2)若∠ACP=m°,∠ABP=n°,請直接寫出m,n滿足的關系式:

【答案】
(1)解:∵點D是BC邊的中點,DE⊥BC,

∴PB=PC,

∴∠PBC=∠PCB,

∵BP平分∠ABC,

∴∠PBC=∠ABP,

∴∠PBC=∠PCB=∠ABP,

∵∠A=60°,∠ACP=24°,

∴∠PBC+∠PCB+∠ABP=120°﹣24°,

∴3∠ABP=120°﹣24°,

∴∠ABP=32°;


(2)m+3n=120
【解析】(2)∵點D是BC邊的中點,DE⊥BC,

∴PB=PC,

∴∠PBC=∠PCB,

∵BP平分∠ABC,

∴∠PBC=∠ABP,

∴∠PBC=∠PCB=∠ABP=n°,

∵∠A=60°,∠ACP=m°,

∴∠PBC+∠PCB+∠ABP=120°﹣m°,

∴3∠ABP=120°﹣m°,

∴3n°+m°=120°,
【考點精析】掌握線段垂直平分線的性質是解答本題的根本,需要知道垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:=8,則點A(1,a)關于y軸的對稱點為點B,將點B向下平移2個單位后,再向左平移3個單位得到點C,則C點與原點及A點所圍成的三角形的面積為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線BD上的一動點,連接CP并延長交AD于E,交BA的延長線于點F.

(1)求證:△APD≌△CPD.
(2)當菱形ABCD變?yōu)檎叫危襊C=2,tan∠PFA= 時,求正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABACBEAC于點E,CFAB于點F,BECF交于點D,則下列結論中不正確的是(  )

A. ABE≌△ACF B. DBAC的平分線上

C. BDF≌△CDE D. DBE的中點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某村為了盡早擺脫貧窮落后的現(xiàn)狀,積極響應國家號召,15位村民集資8萬元,承包了一些土地種植有機蔬菜和水果,種這兩種作物每公頃需要人數(shù)和投入資金如下表:

現(xiàn)有條件下,這15位村民應承包多少公頃土地,怎樣安排能使得每人都有事可做,并且資金正好夠用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知多項式3x62x24的常數(shù)項為a,次數(shù)為b

1)設ab分別對應數(shù)軸上的點A、點B,請直接寫出a   b   ,并在數(shù)軸上確定點A、點B的位置;

2)在(1)的條件下,點P以每秒2個單位長度的速度從點AB運動,運動時間為t秒:

①若PAPB6,求t的值,并寫出此時點P所表示的數(shù);

②若點P從點A出發(fā),到達點B后再以相同的速度返回點A,在返回過程中,求當OP3時,t為何值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點A20)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2018次相遇地點的坐標是(  )

A. 1,﹣1 B. 20 C. (﹣1,1 D. (﹣1,﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=2,AC=AD,請增加一個條件,使ABC≌△AED,你添加的條件是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.

查看答案和解析>>

同步練習冊答案