【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點的橫坐標(biāo)分別為﹣1,3,則下列結(jié)論正確的個數(shù)有( )
①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意x均有ax2+bx≥a+b.
A.1
B.2
C.3
D.4
【答案】C
【解析】解:根據(jù)圖象可得:拋物線開口向上,則a>0.拋物線與y交與負(fù)半軸,則c<0,
故①ac<0錯誤;
對稱軸:x=﹣>0,
∵它與x軸的兩個交點分別為(﹣1,0),(3,0),
∴對稱軸是x=1,
∴﹣=1,
∴b+2a=0,
故②2a+b=0正確;
把x=2代入y=ax2+bx+c=4a+2b+c,由圖象可得4a+2b+c>0,
故③4a+2b+c>0正確;
對于任意x均有ax2+bx≥a+b,
故④正確;
故選C
首先根據(jù)二次函數(shù)圖象開口方向可得a>0,根據(jù)圖象與y軸交點可得c<0,再根據(jù)二次函數(shù)的對稱軸x=﹣ , 結(jié)合圖象與x軸的交點可得對稱軸為x=1,根據(jù)對稱軸公式結(jié)合a的取值可判定出b<0進(jìn)而解答即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時,四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個口袋中有1個黑球和若干個白球,這些球除顏色外其他都相同.已知從中任意摸取一個球,摸得黑球的概率為 .
(1)求口袋中白球的個數(shù);
(2)如果先隨機(jī)從口袋中摸出一球,不放回,然后再摸出一球,求兩次摸出的球都是白球的概率.用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠一周計劃每天生產(chǎn)400輛自行車,實際生產(chǎn)量(單位:輛)分別為405,393,410,409,387,406,397.
(1)用正、負(fù)數(shù)表示實際生產(chǎn)量與計劃量的增減情況;
(2)該廠實際共生產(chǎn)多少輛自行車?平均每天生產(chǎn)多少輛自行車
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B以3cm/s的速度運動.點P、Q分別從點A和點C同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點隨之停止運動.
(1)經(jīng)過多長時間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長時間,四邊形PQBA是矩形?
(3)經(jīng)過多長時間,當(dāng)PQ不平行于CD時,有PQ=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,作AD⊥AB交BC的延長線于點D,作CE⊥AC,且使AE∥BD,連結(jié)DE.
(1)求證:AD=CE.
(2)若DE=3,CE=4,求tan∠DAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=4,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我縣1800名初中畢業(yè)生參加云南省數(shù)學(xué)學(xué)業(yè)水平考試的成績情況(得分取整數(shù)),我們隨機(jī)抽取了部分學(xué)生的數(shù)學(xué)成績,將其等級情況制成不完整的統(tǒng)計表如下:
等級 | A級(優(yōu)秀) | B級(良好) | C級(及格) | D級(不及格) |
人數(shù) | 22 | 28 | 18 |
根據(jù)以上提供的信息解答下列問題:
(1)若抽取的學(xué)生的數(shù)學(xué)成績的及格率(C級及其以上為及格)為77.5%,則抽取的學(xué)生數(shù)是多少人?其中成績?yōu)镃級的學(xué)生有多少人?
(2)求出D級學(xué)生的人數(shù)在扇形統(tǒng)計圖中的圓心角.
(3)請你估計全縣數(shù)學(xué)成績?yōu)锳級的學(xué)生總?cè)藬?shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com