若方程2x(kx-4)-x2+6=0沒(méi)有實(shí)數(shù)根,則k的最小整數(shù)值是
 
分析:先把方程變形為關(guān)于x的一元二次方程的一般形式:(2k-1)x2-8x+6=0,要方程無(wú)實(shí)數(shù)根,則△=82-4×6(2k-1)<0,
解不等式,并求出滿足條件的最小整數(shù)k.
解答:解:方程變形一般形式:(2k-1)x2-8x+6=0,
∵方程2x(kx-4)-x2+6=0沒(méi)有實(shí)數(shù)根,
∴△=82-4×6(2k-1)<0,解得k>
11
6

所以滿足條件的最小整數(shù)k=2.
故填2.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式.當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的一元二次方程kx2+2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是
 
,若關(guān)于x的方程x2-x+cos2α=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α為
 
,若方程2x(kx-4)-x2+6=0無(wú)實(shí)數(shù)根,則k的最小整數(shù)值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•黔南州)若方程2x(kx-4)-x2+6=0沒(méi)有實(shí)數(shù)根,則k的最小整數(shù)值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:黔南州 題型:單選題

若方程2x(kx-4)-x2+6=0沒(méi)有實(shí)數(shù)根,則k的最小整數(shù)值是(  )
A.2B.1C.-1D.不存在

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省無(wú)錫市江陰市長(zhǎng)涇中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

關(guān)于x的一元二次方程kx2+2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是    ,若關(guān)于x的方程x2-x+cos2α=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α為    ,若方程2x(kx-4)-x2+6=0無(wú)實(shí)數(shù)根,則k的最小整數(shù)值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案