分析 (1)當(dāng)點(diǎn)P在線段BC上時(shí),①由折疊得到一對(duì)角相等,再利用正方形性質(zhì)求出∠DAE度數(shù),在三角形AFD中,利用內(nèi)角和定理求出所求角度數(shù)即可;②由E為DF相等,得到P為BC中點(diǎn),如圖1,連接BE交AF于點(diǎn)O,作EG∥AD,得EG∥BC,得到AF垂直平分BE,進(jìn)而得到三角形BOP與三角形EOG全等,利用全等三角形對(duì)應(yīng)邊相等得到BP=EG=1,得到P為BC中點(diǎn),進(jìn)而求出所求角度數(shù)即可;
(2)若點(diǎn)P是線段BC上任意一點(diǎn)時(shí)(不與B,C重合),∠AFD的度數(shù)不會(huì)發(fā)生變化,理由為:作AG⊥DF于點(diǎn)G,如圖1(a)所示,利用折疊的性質(zhì)及三線合一性質(zhì),根據(jù)等式的性質(zhì)求出∠1+∠2的度數(shù),即為∠FAG度數(shù),即可求出∠F度數(shù);
(3)作出相應(yīng)圖形,如圖2所示,若點(diǎn)P在BC邊的延長線上時(shí),∠AFD的度數(shù)不會(huì)發(fā)生變化,理由為:作AG⊥DE于G,得∠DAG=∠EAG,設(shè)∠DAG=∠EAG=α,根據(jù)∠FAE為∠BAE一半求出所求角度數(shù)即可.
解答 解:(1)①∵∠EAP=∠BAP=30°,
∴∠DAE=90°-30°×2=30°,
在△ADE中,AD=AE,∠DAE=30°,
∴∠ADE=∠AED=(180°-30°)÷2=75°,
在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,
∴∠F=180°-60°-75°=45°;
②點(diǎn)E為DF的中點(diǎn)時(shí),P也為BC的中點(diǎn),理由如下:
如圖1,連接BE交AF于點(diǎn)O,作EG∥AD,得EG∥BC,
∵EG∥AD,DE=EF,
∴EG=$\frac{1}{2}$AD=1,
∵AB=AE,
∴點(diǎn)A在線段BE的垂直平分線上,
同理可得點(diǎn)P在線段BE的垂直平分線上,
∴AF垂直平分線段BE,
∴OB=OE,
∵GE∥BP,
∴∠OBP=∠OEG,∠OPB=∠OGE,
∴△BOP≌△EOG,
∴BP=EG=1,即P為BC的中點(diǎn),
∴∠DAF=90°-∠BAF,∠ADF=45°+∠BAF,
∴∠AFD=180°-∠DAF-∠ADF=45°;
(2)∠AFD的度數(shù)不會(huì)發(fā)生變化,
證明:作AG⊥DF于點(diǎn)G,如圖1(a)所示,
在△ADE中,AD=AE,AG⊥DE,
∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,
∴∠1+∠2=$\frac{1}{2}$×90°=45°,即∠FAG=45°,
則∠F=90°-45°=45°;
(3)如圖2所示,∠AFE的大小不會(huì)發(fā)生變化,∠AFE=45°,
作AG⊥DE于G,得∠DAG=∠EAG,
設(shè)∠DAG=∠EAG=α,
∴∠BAE=90°+2α,
∴∠FAE=$\frac{1}{2}$∠BAE=45°+α,
∴∠FAG=∠FAE-∠EAG=45°,
在Rt△AFG中,∠AFE=90°-45°=45°.
點(diǎn)評(píng) 此題屬于四邊形綜合題,涉及的知識(shí)有:正方形的性質(zhì),直角三角形的性質(zhì),三角形內(nèi)角和定理,全等三角形的判定與性質(zhì),平行線的性質(zhì),以及等邊三角形的性質(zhì),熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a2-3ab-3b2 | B. | 2a2+5ab+3b2 | C. | 2a2+5ab+3b2 | D. | 2a2+5ab-3b2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (2)(4) | B. | (2)(3)(5)(8) | C. | (2)(7)(8) | D. | (1)(3)(4)(6) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com