【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,合肥市某中學利用周末時間開展了“助老助殘、社區(qū)服務、生態(tài)環(huán)保、網(wǎng)絡文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)請把折線統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中,網(wǎng)絡文明部分對應的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.
【答案】(1)該班全部人數(shù)48人,社區(qū)服務的人數(shù)為24人,補全折線統(tǒng)計如圖所示見解析;(2)網(wǎng)絡文明部分對應的圓心角的度數(shù)為45°;(3)他們參加同一服務活動的概率為.
【解析】
(1)根據(jù)參加生態(tài)環(huán)保的人數(shù)以及百分比求得總人數(shù),用總人數(shù)乘以“社區(qū)服務”百分比求得其人數(shù),即可解決問題;
(2)根據(jù)圓心角=360°×百分比,計算即可;
(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與他們參加同一服務活動的情況,再利用概率公式求解即可求得答案.
(1)該班全部人數(shù):12÷25%=48人.
社區(qū)服務的人數(shù)為48×50%=24,
補全折線統(tǒng)計如圖所示:
(2)網(wǎng)絡文明部分對應的圓心角的度數(shù)為360°×=45°;
(3)分別用A,B,C,D表示“社區(qū)服務、助老助殘、生態(tài)環(huán)保、網(wǎng)絡文明”四個服務活動,
畫樹狀圖得:
∵共有16種等可能的結果,他們參加同一服務活動的有4種情況,
∴他們參加同一服務活動的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:
(1)這次知識競賽共有多少名學生?
(2)“二等獎”對應的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;
(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料并回答問題:
材料1:如果一個三角形的三邊長分別為a,b,c,記,那么三角形的面積為. ①
古希臘幾何學家海倫(Heron,約公元50年),在數(shù)學史上以解決幾何測量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式.
我國南宋數(shù)學家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:. ②
下面我們對公式②進行變形:
.
這說明海倫公式與秦九韶公式實質上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式.
問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內切于△ABC,切點分別是D、E、F.
(1)求△ABC的面積;
(2)求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為252m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和6m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正五邊形ABCDE的邊長為2,分別以點C、D為圓心,CD長為半徑畫弧,兩弧交于點F,則的長為_____.
【答案】
【解析】
試題解析:連接CF,DF,
則△CFD是等邊三角形,
∴∠FCD=60°,
∵在正五邊形ABCDE中,∠BCD=108°,
∴∠BCF=48°,
∴的長=,
故答案為:.
【題型】填空題
【結束】
14
【題目】如圖,矩形紙片ABCD中,已知AD=8,AB=6,E是BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當ΔEFC為直角三角形時,BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉90°后,得到△CBE.
(1)求∠DCE的度數(shù);
(2)若AB=4,CD=3AD,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個長方體,至少還需要________個小立方塊.最終搭成的長方體的表面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF:DC=1:4,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為10,求BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com