【題目】如圖,從下列三個(gè)條件中:(1); (2); (3).任選兩個(gè)作為條件,另一個(gè)作為結(jié)論,書(shū)寫(xiě)出一個(gè)真命題,并證明.

命題:

證明:

【答案】見(jiàn)解析.

【解析】分析:根據(jù)題意可知已知AD∥CB,AB∥CD求證∠A=∠C.欲證∠A=∠C,需證明∠A=∠ABF且∠C=∠ABF,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等及兩直線平行,同位角相等可證.

本題解析:

命題:如果 ADCB, ABCD ,那么∠A=C(答案不唯一)

證明:∵ADCB

∴∠A=ABF

ABCD

∴∠C=ABF

又∵ A=ABF

∴∠A=C

點(diǎn)睛: 此題考查了平行線的判定與性質(zhì),解答此類判定兩角相等的問(wèn)題,需先確定兩角的位置關(guān)系,由平行線的性質(zhì)求出兩角相等即可.本題是一道探索性條件開(kāi)放性題目,能有效地培養(yǎng)“執(zhí)果索因”的思維方式與能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是(

A.x2xxB.2a23a25a4C.3aa=-2aD.ab3ab=-2ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),PQ垂直平分BE,分別交AD、BE、BC于點(diǎn)P、O、Q,連接BP、EQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,F(xiàn)為AB的中點(diǎn),OF+OB=9,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有三角形“▲"和“△”共2011個(gè),按照一定的規(guī)律排列如下: ▲△△▲△▲▲△△▲△▲▲…….,則黑色三角形共有_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,C=90°,AD=5,BC=9,以A為中心將腰AB順時(shí)針旋轉(zhuǎn)90°至AE,連接DE,則ADE的面積等于 ( )

A10 B11 C12 D13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠AOC=60°.將一把直角三角尺的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方,其中∠OMN=30°.

(1)將圖①中的三角尺繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖②,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,則∠CON=________;

(2)將圖①中的三角尺繞點(diǎn)O按每秒10°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,在第________秒時(shí),邊MN恰好與射線OC平行;在第________秒時(shí),直線ON恰好平分銳角∠AOC(直接寫(xiě)出結(jié)果);

(3)將圖①中的三角尺繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖③,使ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄俊?/span>AOM與∠NOC之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3x3ym+16xn+1y2是同類項(xiàng),則m+n_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的角平分線,DEAC,垂足為E,BFACED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE2EC,給出下列四個(gè)結(jié)論:

DEDF;DBDCADBC;AB3BF,其中正確的結(jié)論共有

A. ①②③ B. ①③④ C. ②③ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案