分析 (1)由AB=AC,∠A=36°,可求得∠ACB的度數(shù),又由直線MN垂直平分AC交AB于M,根據(jù)線段垂直平分線的性質(zhì),可求得AM=CM,即可求得∠ACM的度數(shù),繼而求得∠BCM的度數(shù);
(2)由AM=CM,可得△BCM的周長=BC+AB.
解答 解:(1)∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∵直線MN垂直平分AC交AB于M,
∴AM=CM,
∴∠ACM=∠A=36°,
∴∠BCM=∠ACB-∠ACM=36°;
(2)∵AM=CM,
∴△BCM的周長=BC+CM+BM=BC+AM+BM=BC+AB=3+5=8.
點(diǎn)評 此題考查了線段垂直平分線的性質(zhì)以及等腰三角形的性質(zhì).注意垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | AE | B. | ED | C. | CD | D. | AB |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x2=1 | B. | x(x-1)=x(x-2) | C. | x2+2=0 | D. | x(x-1)=x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4}{9}$ | B. | 1 | C. | $\frac{4}{9}$ | D. | 1或$\frac{4}{9}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com