【題目】某射擊隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)射擊運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖.
(1)你能利用該統(tǒng)計(jì)圖求出平均數(shù)、眾數(shù)和中位數(shù)中的哪些統(tǒng)計(jì)量?并直接寫(xiě)出結(jié)果;
(2)小穎認(rèn)為,若從該射擊隊(duì)中任意挑選四名隊(duì)員,則必有一名隊(duì)員的年齡是15歲.你認(rèn)為她的判斷正確嗎?為什么?
(3)小亮認(rèn)為,可用該統(tǒng)計(jì)圖求出方差.你認(rèn)同他的看法嗎?若認(rèn)同,請(qǐng)求出方差;若不認(rèn)同,請(qǐng)說(shuō)明理由.
【答案】(1)眾數(shù)為14,中位數(shù)為15;(2)見(jiàn)解析;(3)可以.
【解析】試題分析:(1)利用加權(quán)平均數(shù)公式求出平均數(shù),根據(jù)眾數(shù)、中位數(shù)的定義即可解決問(wèn)題;
(2)判斷錯(cuò)誤.可能抽到13歲,14歲,16歲,17歲;
(3)可以.根據(jù)方差公式計(jì)算即可;
試題解析:解:(1)平均數(shù)==15,眾數(shù)為14,中位數(shù)為15;
(2)判斷錯(cuò)誤.可能抽到13歲,14歲,16歲,17歲;
(3)可以.
設(shè)有n個(gè)運(yùn)動(dòng)員,則S2=[10%n(13﹣15)2+30%n(14﹣15)2+25%n(15﹣15)2+20%n(16﹣15)2+15%n(17﹣15)2]=1.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解放中學(xué)為了了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)四類電視節(jié)目的喜愛(ài)程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給的信息解答下列問(wèn)題.
(1)喜愛(ài)動(dòng)畫(huà)的學(xué)生人數(shù)和所占比例分別是多少?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計(jì)該校喜歡體育的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求兩個(gè)正整數(shù)的最大公約數(shù)是常見(jiàn)的數(shù)學(xué)問(wèn)題,中國(guó)古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個(gè)正整數(shù)最大公約數(shù)的一種方法——更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也,以等數(shù)約之.”意思是說(shuō),要求兩個(gè)正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時(shí),此時(shí)的差(或減數(shù))即為這兩個(gè)正整數(shù)的最大公約數(shù).例如:求91與56的最大公約數(shù):
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰△AOB,AO=AB=5,OB=6.以O(shè)為原點(diǎn),以O(shè)B邊所在的直線為x軸,以垂直于OB的直線為y軸建立平面直角坐標(biāo)系.
(1)求點(diǎn)A的坐標(biāo);
(2)若點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為M,點(diǎn)N的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo),請(qǐng)?jiān)趫D中畫(huà)出一個(gè)滿足條件的△AMN,并直接在圖上標(biāo)出點(diǎn)M,N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,OC=3OA.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)經(jīng)過(guò)C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E,F分別是AB,CD上的點(diǎn),點(diǎn)G是BC的延長(zhǎng)線上一點(diǎn),且∠B=∠DCG=∠D,則下列判斷中,錯(cuò)誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(n,-2),B(1,4)是一次函數(shù) y=kx+b的圖象和反比例函數(shù) 的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)觀察圖象,直接寫(xiě)出反比例函數(shù)值大于一次函數(shù)值x取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過(guò)重會(huì)嚴(yán)重影響學(xué)生對(duì)待學(xué)習(xí)的態(tài)度.為此我市教育部門(mén)對(duì)部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我市近8000名八年級(jí)學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD被EF所截,點(diǎn)G,H為它們的交點(diǎn),∠1∶∠2=5∶3,∠2與它的內(nèi)錯(cuò)角相等,HP平分∠CHG.求:
(1)∠4的度數(shù);
(2)∠CHP的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com