【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=8,點(diǎn)P從點(diǎn)A出發(fā),沿折線AC-CB以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P不與點(diǎn)A,B重合時(shí),在邊AB上取一點(diǎn)Q,滿足∠PQA=2∠B,過點(diǎn)Q作QM⊥PQ,交邊BC于點(diǎn)M,以PQ,QM為邊作矩形PQMN,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)直接寫出線段PQ的長(zhǎng)(用含t的代數(shù)式表示);
(2)當(dāng)矩形PQMN為正方形時(shí),求t的值;
(3)設(shè)矩形PQMN與△ABC重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系式.
【答案】(1)當(dāng)0<t≤2時(shí),PO= t,當(dāng)2<t<6時(shí),PQ= t+3 ;(2)t= ;(3)S= - t+
【解析】
(1)利用行程問題的等量關(guān)系用含t的代數(shù)式表示出線段AP的長(zhǎng),利用勾股定理求出AB的長(zhǎng),然后分兩種情況解答:
①當(dāng)0<t≤2時(shí),作QH⊥AC,可得QH∥BC,則∠AQH=∠B,已知∠PQA=2∠B,故可得∠AQH=∠PQH,從而可得△AQH≌△PAH,利用全等三角形對(duì)應(yīng)邊相等可得PQ=AQ;然后易證△AQH∽△ABC,利用相似三角形的對(duì)應(yīng)邊成比例列出比例式即可求出線段AQ,而PQ=AQ,故而可求;
②當(dāng)2<t<6時(shí),作QG⊥BC,可得PQ=QB,利用△BQG∽△BAC對(duì)應(yīng)邊成比例求解,解法同①;
(2)分兩種情況求解:①當(dāng)0<t≤2時(shí),作QD⊥AC,QE⊥BC,利用正方形的性質(zhì)易證△DQP≌△EQM,則DQ=EQ,即t+2t=4,解得值即可;②當(dāng)2<t<6時(shí),PQ=QB>QM,則可判斷PQMN不可能是正方形;
(3)分0<t≤2和2<t<6兩種情況,用割補(bǔ)法求出重合部分的面積即可;
(1)當(dāng)0<t≤2時(shí),作QH⊥AC,可得QH∥BC,則∠AQH=∠B,已知∠PQA=2∠B,故可得∠AQH=∠PQH,從而可得△AQH≌△PAH,利用全等三角形對(duì)應(yīng)邊相等可得PQ=AQ;然后易證△AQH∽△ABC,利用相似三角形的對(duì)應(yīng)邊成比例列出比例式即可求出線段AQ,而PQ=AQ,故而可求PO= t;當(dāng)2<t<6時(shí),作QG⊥BC,可得PQ=QB,利用△BQG∽△BAC對(duì)應(yīng)邊成比例,得到PQ= (6-t)= t+3 .
(2)解:當(dāng)2<t<6時(shí),PQ=QB>QM,此時(shí)矩形PQMN不可是正方形.
當(dāng)0<t≤2時(shí),
如圖,過點(diǎn)Q分別作AC,BC的垂線,垂足為D,E.
∵∠PQM=∠DQE=90°,
∴∠DQP=∠EQM,
又∠PDQ=∠MEQ=90°,PQ=MQ,
∴△DQP≌△EQM(AAS),
∴DQ=EQ
∴t+2t=4,解得t=
即,當(dāng)t= 時(shí),矩形PQMN為正方形
(3)當(dāng)0<t≤2時(shí),S=PQ·QM- = t· (4-t)- = +10t;當(dāng)2<t<6時(shí),S= = = - t+ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-1.5,0),B(0,2),將△ABO順著x軸的正半軸無滑動(dòng)的滾動(dòng),第一次滾動(dòng)到①的位置,點(diǎn)B的對(duì)應(yīng)點(diǎn)記作B1;第二次滾動(dòng)到②的位置,點(diǎn)B1的對(duì)應(yīng)點(diǎn)記作B2;第三次滾動(dòng)到③的位置,點(diǎn)B2的對(duì)應(yīng)點(diǎn)記作B3;;依次進(jìn)行下去,則點(diǎn)B2020的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)在直線上,橫坐標(biāo)為.
(1)確定二次函數(shù)的解析式;
(2)如圖1,時(shí),交二次函數(shù)的圖象于點(diǎn)的面積記作為何值時(shí)的值最大,并求出的最大值;
(3)如圖2,過點(diǎn)作軸的平行線交二次函數(shù)的圖象于點(diǎn)點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱是否存在點(diǎn)使四邊形為菱形,若存在直接寫出的值;若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商場(chǎng)經(jīng)銷一種高檔水果,原價(jià)每千克25元,連續(xù)兩次漲價(jià)后每千克水果現(xiàn)在的價(jià)格為36元.
(1)若每次漲價(jià)的百分率相同.求每次漲價(jià)的百分率;
(2)若進(jìn)價(jià)不變,按現(xiàn)價(jià)售出,每千克可獲利15元,但該水果出現(xiàn)滯銷,商場(chǎng)決定降價(jià)m元出售,同時(shí)把降價(jià)的幅度m控制在的范圍,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),每天銷售量 (千克)與降價(jià)的幅度m(元)成正比例,且當(dāng)時(shí),. 求與 m的函數(shù)解析式;
(3)在(2)的條件下,若商場(chǎng)每天銷售該水果盈利元,為確保每天盈利最大,該水果每千克應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“扶貧攻堅(jiān)”活動(dòng)中,某單位計(jì)劃選購(gòu)甲,乙兩種物品慰問貧困戶.已知甲物品的單價(jià)比乙物品的單價(jià)高10元,若用500元單獨(dú)購(gòu)買甲物品與450元單獨(dú)購(gòu)買乙物品的數(shù)量相同.求甲,乙兩種物品的單價(jià)各多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年冬奧會(huì),鼓勵(lì)更多的大學(xué)生參與到志愿服務(wù)中,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊(duì)選拔活動(dòng),經(jīng)過初選,兩所學(xué)校各有300名學(xué)生進(jìn)入綜合素質(zhì)展示環(huán)節(jié),為了了解這些學(xué)生的整體情況,從兩校進(jìn)入綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析,下面給出了部分信息.
a.甲學(xué)校學(xué)生成績(jī)的頻數(shù)分布直方圖如圖(數(shù)據(jù)分成6組:,,,,,).
b.甲學(xué)校學(xué)生成績(jī)?cè)?/span>這一組是:
80 80 81 81.5 82 83 83 84
85 86 86.5 87 88 88.5 89 89
c.乙學(xué)校學(xué)生成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
83.3 | 84 | 78 | 46% |
根據(jù)以上信息,回答下列問題:
(1)甲學(xué)校學(xué)生,乙學(xué)校學(xué)生的綜合素質(zhì)展示成績(jī)同為82分,這兩人在本校學(xué)生中綜合素質(zhì)展示排名更靠前的是________(填“”或“”);
(2)根據(jù)上述信息,推斷________學(xué)校綜合素質(zhì)展示的水平更高,理由為:__________________________
(至少?gòu)膬蓚(gè)不同的角度說明推斷的合理性).
(3)若每所學(xué)校綜合素質(zhì)展示的前120名學(xué)生將被選入志愿服務(wù)團(tuán)隊(duì),預(yù)估甲學(xué)校分?jǐn)?shù)至少達(dá)到________分的學(xué)生才可以入選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.
求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O的半徑為4,點(diǎn)A是⊙O上一點(diǎn),直線l過點(diǎn)A;P是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),過點(diǎn)P作PB⊥l于點(diǎn)B,交⊙O于點(diǎn)E,直徑PD延長(zhǎng)線交直線l于點(diǎn)F,點(diǎn)A是的中點(diǎn).
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn)拋物線的對(duì)稱軸是直線與軸的交點(diǎn)為點(diǎn)且經(jīng)過點(diǎn)兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)為拋物線對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)的值最小時(shí),請(qǐng)你求出點(diǎn)的坐標(biāo);
(3)拋物線上是否存在點(diǎn),過點(diǎn)作軸于點(diǎn)使得以點(diǎn)為頂點(diǎn)的三角形與相似?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com