已知a-b=1,則代數(shù)式2a-2b-3的值是

[  ]

A.-1

B.1

C.-5

D.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

近年來,大學(xué)生就業(yè)日益困難.為了扶持大學(xué)生自主創(chuàng)業(yè),某市政府提供了80萬元無息貸款,用于某大學(xué)生開辦公司生產(chǎn)并銷售自主研發(fā)的一種電子產(chǎn)品,并約定用該公司經(jīng)營的利潤逐步償還無息貸款.已知該產(chǎn)品的生產(chǎn)成本為每件40元,員工每人每月的工資為2500元,公司每月需支付其他費用15萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系如圖所示.

(1)分別求出40<x≤60;60<x<80時,月銷售量y(萬件)與銷售

單價x(元)之間的函數(shù)關(guān)系;

(2)當(dāng)銷售單價定為50元時,為保證公司月利潤達(dá)到5萬元

(利潤=銷售額—生產(chǎn)成本—員工工資—其它費用),該公司

可安排員工多少人?

(3)若該公司有80名員工,則該公司最早可在幾月后還清貸款?

 

【解析】(1)利用圖象上點的坐標(biāo)利用待定系數(shù)法代入y=kx+b,求出一次函數(shù)解析式即可;

(1) 根據(jù)利潤=銷售額—生產(chǎn)成本—員工工資—其它費用列方程求出解

(3)分兩種情況進(jìn)行討論:當(dāng)時,當(dāng)時得出結(jié)論

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察可得最簡公分母是(x+1)(x-1),方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.

【解答】

(2)方程的兩邊同乘(x+1)(x-1),得

2(x-1)+4=x2-1,

x2-2x-3=0,

(x-3)(x+1)=0,

解得x1=3,x2=-1,

檢驗:把x=3代入(x+1)(x-1)=8≠0,即x=3是原分式方程的解,

x=-1代入(x+1)(x-1)=0,即x=-1不是原分式方程的解,

則原方程的解為:x=3.

【點評】此題考查了實數(shù)的混合運算與分式方程的解法.此題難度不大,但注意掌握絕對值的性質(zhì)、負(fù)指數(shù)冪的性質(zhì)、零指數(shù)冪的性質(zhì)以及特殊角的三角函數(shù)值,注意解分式方程一定要驗根.

20.(本題滿分5分)如圖,已知△ABC,且∠ACB=90°。

(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明);

①以點A為圓心,BC邊的長為半徑作⊙A;

②以點B為頂點,在AB邊的下方作∠ABD=∠BAC.

(2)請判斷直線BD與⊙A的位置關(guān)系(不必證明).

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰州市靖江外國語學(xué)校中考二模數(shù)學(xué)卷(解析版) 題型:解答題

近年來,大學(xué)生就業(yè)日益困難.為了扶持大學(xué)生自主創(chuàng)業(yè),某市政府提供了80萬元無息貸款,用于某大學(xué)生開辦公司生產(chǎn)并銷售自主研發(fā)的一種電子產(chǎn)品,并約定用該公司經(jīng)營的利潤逐步償還無息貸款.已知該產(chǎn)品的生產(chǎn)成本為每件40元,員工每人每月的工資為2500元,公司每月需支付其他費用15萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系如圖所示.

(1)分別求出40<x≤60;60<x<80時,月銷售量y(萬件)與銷售

單價x(元)之間的函數(shù)關(guān)系;

(2)當(dāng)銷售單價定為50元時,為保證公司月利潤達(dá)到5萬元

(利潤=銷售額—生產(chǎn)成本—員工工資—其它費用),該公司

可安排員工多少人?

(3)若該公司有80名員工,則該公司最早可在幾月后還清貸款?

 

【解析】(1)利用圖象上點的坐標(biāo)利用待定系數(shù)法代入y=kx+b,求出一次函數(shù)解析式即可;

(1) 根據(jù)利潤=銷售額—生產(chǎn)成本—員工工資—其它費用列方程求出解

(3)分兩種情況進(jìn)行討論:當(dāng)時,當(dāng)時得出結(jié)論

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年人教版二元一次方程單元測試 題型:填空題

.已知,且abc,則a=_______,b=_______,c=_______.

【解析】即作方程組,故可設(shè)a=2 k,b=3 kc= 4 k,代入另一個方程求k的值.

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

.已知,且abc,則a=_______,b=_______,c=_______.

【解析】即作方程組,故可設(shè)a=2 k,b=3 k,c=4 k,代入另一個方程求k的值.

   

查看答案和解析>>

同步練習(xí)冊答案