已知四條線段成比例線段 , 其中三條線段長分別為4cm , 5cm和10cm , 那么 第四條線段的長可能是 

[    ]

A.7.5cm      B.8.5cm      C.10.5cm      D.12.5cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
BD
DC
=
AB
AC

分析:要證
BD
DC
=
AB
AC
,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作C精英家教網(wǎng)E∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明
BD
DC
=
AB
AC
就可以轉(zhuǎn)化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA?
∠1=∠E
∠2=∠3
∠1=∠2
?∠E=∠3?AE=AC

CE∥DA?
BD
DC
=
BA
AE
AE=AC
?
BD
DC
=
AB
AC

(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個填在后面的括號內(nèi).精英家教網(wǎng)[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:解答題

閱讀下面材料,按要求完成后面作業(yè)。
三角形內(nèi)角平分線性質(zhì)定理:三角形內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應(yīng)成比例。
 已知:△ABC中,AD是角平分線(如圖1), 求證:=。
               
分析:要證=,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在的三角形相似,現(xiàn)在B、D、C在一條直線,△ABD與△ADC不相似,需要考慮用別的方法換比。
 在比例式=中,AC恰好是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明=,就可轉(zhuǎn)化證=。
(1)完成證明過程: 
證明:
(2)上述證明過程中,用到了哪些定理(寫對兩個即可)
答:用了:①____________;
②_____________。
 (3)在上述分析和你的證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種:①數(shù)形結(jié)合思想 ②轉(zhuǎn)化思想 ③分類討論思想 
答:____________。
(4) 用三角形內(nèi)角平分線定理解答問題: 
如圖2,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BD=7cm,求BC之長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉(zhuǎn)化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA,
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個填在后面的括號內(nèi).[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《三角形》(05)(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉(zhuǎn)化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個填在后面的括號內(nèi).[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(01)(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內(nèi)角平分線性質(zhì)定理:三角形的內(nèi)角平分線分對邊所得的兩條線段和這個角的兩邊對應(yīng)成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉(zhuǎn)化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA,
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學(xué)思想的哪一種?選出一個填在后面的括號內(nèi).[]
①數(shù)形結(jié)合思想;
②轉(zhuǎn)化思想;
③分類討論思想.
(3)用三角形內(nèi)角平分線性質(zhì)定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

同步練習(xí)冊答案