【題目】如圖,已知ABC≌△DEF,DFBC,且∠B60°,∠F40°,點(diǎn)ADE上,則∠BAD的度數(shù)為_________°

【答案】20°

【解析】

先由△ABC≌△DEF,根據(jù)全等三角形的性質(zhì)得出∠B=E=60°,∠C=F=40°,由DFBC,得出∠1=C,等量代換得到∠1=F,那么ACEF,于是∠2=E=60°.由三角形內(nèi)角和定理求出∠BAC=180°-B-C=80°,于是∠BAD=BAC-2=20°.

∵△ABC≌△DEF,

∴∠B=E=60°,∠C=F=40°,

DFBC,

∴∠1=C,

∴∠1=F,

ACEF,

∴∠2=E=60°,

∵∠BAC=180°-B-C=180°-60°-40°=80°,

∴∠BAD=BAC-2=80°-60°=20°,

故答案為:20.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)B(4,2)C(3,4)

(1)請(qǐng)畫出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1;

(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2

(3)x軸上找一點(diǎn)P,使PAPB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,已知∠1=∠2,∠C=∠D

1)判斷BDCE是否平行,并說明理由;(2)說明∠A=∠F的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)).有下列結(jié)論: ①當(dāng)x=3時(shí),y=0;
②3a+b>0;
③﹣1≤a≤﹣ ;
≤n≤4.
其中正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體考在即,初三(1)班的課題研究小組對(duì)本年級(jí)530名學(xué)生的體育達(dá)標(biāo)情況進(jìn)行調(diào)查,制作出如圖所示的統(tǒng)計(jì)圖,其中1班有50人.(注:30分以上為達(dá)標(biāo),滿分50分)根據(jù)統(tǒng)計(jì)圖,解答下面問題:

(1)初三(1)班學(xué)生體育達(dá)標(biāo)率和本年級(jí)其余各班學(xué)生體育達(dá)標(biāo)率各是多少?
(2)若除初三(1)班外其余班級(jí)學(xué)生體育考試成績(jī)?cè)?0﹣﹣40分的有120人,請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖;(注:請(qǐng)?jiān)趫D中分?jǐn)?shù)段所對(duì)應(yīng)的圓心角的度數(shù))
(3)如果要求全年級(jí)學(xué)生的體育達(dá)標(biāo)率不低于90%,試問在本次調(diào)查中,該年級(jí)全體學(xué)生的體育達(dá)標(biāo)率是否符合要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)=ax+2by﹣1(其中ab均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)=a0+2b1﹣1=2b﹣1.

(1)已知T(1,﹣1)=﹣2,T(4,2)=3.

①求a,b的值;

②若關(guān)于m的不等式組恰好有2個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;

(2)若T(x,y)=T(yx)對(duì)任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(yx)均有意義),則ab應(yīng)滿足怎樣的關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,是角平分線,上的點(diǎn), 相交于點(diǎn).

(1) 如圖2,若=90°,求證: ;

(2) 如圖1,若=( 0°< <180°).

①求的值(用含的代數(shù)式表示);

②是否存在,使小于,如果存在,求出的范圍,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一定能確定ABC≌△DEF的條件是(

A.AB=DE,BC=EF,A=DB.A=E,AB=EF,B=D

C.A=D,AB=DE,B=ED.A=D,B=E,C=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年是大家公認(rèn)的商用元年.移動(dòng)通訊行業(yè)人員想了解手機(jī)的使用情況,在某高校隨機(jī)對(duì)500位大學(xué)生進(jìn)行了問卷調(diào)查.下列說法正確的是( )

A.該調(diào)查方式是普查

B.該調(diào)查中的個(gè)體是每一位大學(xué)生

C.該調(diào)查中的樣本是被隨機(jī)調(diào)查的500位大學(xué)生手機(jī)的使用情況

D.該調(diào)査中的樣本容量是500位大學(xué)生

查看答案和解析>>

同步練習(xí)冊(cè)答案