【題目】如圖,△ABC中,∠C=90°,D在CB上,E為AB之中點,AD、CE相交于F,且AD=DB.若∠B=20°,則∠DFE=( )
A. 40° B. 50° C. 60° D. 70°
【答案】C
【解析】
已知AD=DB,∠B=20°,由等腰三角形的性質(zhì)可得∠B=∠BAD =20°,根據(jù)三角形外角的性質(zhì)可得∠ADC=∠B+∠BAD =40°,又因∠C=90°,E為AB的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得AE=BE=EC,所以∠BCE=∠B=20°,再根據(jù)三角形外角的性質(zhì)可得 ∠DFE=∠BC E+∠ADC =20°+40°=60°.
∵AD=DB,∠B=20°,
∴∠B=∠BAD =20°,
∴∠ADC=∠B+∠BAD =40°,
∵∠C=90°,E為AB的中點,
∴AE=BE=EC,
∴∠BCE=∠B=20°,
∴∠DFE=∠BC E+∠ADC =20°+40°=60°.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象回答下列問題.
(1)寫出方程ax2+bx+c=0的根;
(2)寫出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k無實數(shù)根,寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②3a+c<0,③a﹣b+c>0,④4a+2b+c>0,⑤若點(﹣2,y1)和(﹣ ,y2)在該圖象上,則y1>y2 , 其中正確的結(jié)論是 . (填入正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,O是坐標原點,直線l:y=x,點A1坐標為(4,0),過點A1作x軸的垂線交直線l于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸正半軸于點A2,再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,OB2為半徑畫弧交x軸正半軸于點A3……按此做法進行下去,點A2 017的橫坐標為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CB,AD=CD,對角線AC,BD相交于點O,OE⊥AB,OF⊥CB,垂足分別是E、F.求證:OE=OF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次軍事演習(xí)中,藍方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進實施攔截,紅方行駛1000米到達C處后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進了相同的距離,剛好在D處成功攔截藍方,求攔截點D處到公路的距離(結(jié)果不取近似值) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com