【題目】如圖,ABC,C=90°,DCB上,EAB之中點,AD、CE相交于F,且AD=DB.若∠B=20°,則∠DFE=( )

A. 40° B. 50° C. 60° D. 70°

【答案】C

【解析】

已知AD=DB,B=20°,由等腰三角形的性質(zhì)可得∠B=∠BAD =20°,根據(jù)三角形外角的性質(zhì)可得∠ADC=B+∠BAD =40°,又因∠C=90°,EAB的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得AE=BE=EC,所以∠BCE=∠B=20°,再根據(jù)三角形外角的性質(zhì)可得 ∠DFE=∠BC E+∠ADC =20°+40°=60°.

∵AD=DB,B=20°,

B=∠BAD =20°,

∠ADC=B+∠BAD =40°,

∵∠C=90°,EAB的中點,

AE=BE=EC,

∴∠BCE=∠B=20°,

∴∠DFE=∠BC E+∠ADC =20°+40°=60°.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象回答下列問題.
(1)寫出方程ax2+bx+c=0的根;
(2)寫出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k無實數(shù)根,寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,ADBC,ABC的平分線BEAD于點F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=C;AE=AF;③∠EBC=C;FGAC;EF=FG.其中正確的結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABE△ADC△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②3a+c<0,③a﹣b+c>0,④4a+2b+c>0,⑤若點(﹣2,y1)和(﹣ ,y2)在該圖象上,則y1>y2 , 其中正確的結(jié)論是 . (填入正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy,O是坐標原點,直線l:y=x,A1坐標為(4,0),過點A1x軸的垂線交直線l于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸正半軸于點A2,再過點A2x軸的垂線交直線l于點B2,以原點O為圓心,OB2為半徑畫弧交x軸正半軸于點A3……按此做法進行下去A2 017的橫坐標為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將邊長為2的正方形OABC如圖放置,O為原點.若∠α=15°,則點B的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CB,AD=CD,對角線AC,BD相交于點O,OEABOFCB,垂足分別是E、F.求證:OE=OF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次軍事演習(xí)中,藍方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進實施攔截,紅方行駛1000米到達C處后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進了相同的距離,剛好在D處成功攔截藍方,求攔截點D處到公路的距離(結(jié)果不取近似值)

查看答案和解析>>

同步練習(xí)冊答案