如圖,正方形ABCD的邊長為2,將長為2的線段QR的兩端放在正方形的相鄰的兩邊上同時滑動.如果點Q從點A出發(fā),沿圖中所示方向按A→B→C→D→A滑動到A止,同時點R從點B出發(fā),沿圖中所示方向按B→C→D→A→B滑動到B止,在這個過程中,線段QR的中點M所經(jīng)過的路線圍成的圖形的面積記為S.點N是正方形ABCD內(nèi)任一點,把N點到四個頂點A,B,C,D的距離均不小于1的概率記為P,則S=( )

A.(4-π)P
B.4(1-P)
C.4P
D.(π-1)P
【答案】分析:根據(jù)直角三角形的性質(zhì),斜邊上的中線等于斜邊的一半,可知:點M到正方形各頂點的距離都為1,故點M所走的運動軌跡為以正方形各頂點為圓心,以1為半徑的四個扇形,點M所經(jīng)過的路線圍成的圖形的面積為正方形ABCD的面積減去4個扇形的面積,求得概率P,用P表示所求的面積即可.
解答:解:正方形ABCD的面積為2×2=4,4個扇形的面積為4π×=π,
∴點M所經(jīng)過的路線圍成的圖形的面積為4-π.
∵N點到四個頂點A,B,C,D的距離均不小于1的概率記為P,
∴P=,
∴4-π=4P,
∴點M所經(jīng)過的路線圍成的圖形的面積為4P.
故選C.
點評:綜合考查概率,有關面積的計算;得到點M所經(jīng)過的路線圍成的圖形的面積是解決本題的關鍵;用到的知識點為:概率=相應的面積與總面積之比.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案