【題目】如圖,已知一次函數(shù)y1=﹣x+m與二次函數(shù)y2ax2+bx3的圖象交于A(﹣1,0)、B2,﹣3)兩點(diǎn).

1)求m的值和二次函數(shù)的表達(dá)式.

2)當(dāng)y1y2時(shí),直接寫出自變量x的取值范圍.

【答案】1m=1 y2=x22x3;(2)﹣1x2

【解析】

1)將點(diǎn)A(﹣1,0)、B2,﹣3)代入y2=ax2+bx3,將點(diǎn)A(﹣10)代入y1=x+m分別求解即可;

2)根據(jù)AB的坐標(biāo),由圖象可得,y1y2時(shí),﹣1x2

1)將點(diǎn)A(﹣1,0)代入y1=x+m,

0=1+m,

m=1,

y1=x1

將點(diǎn)A(﹣1,0)、B2,﹣3)代入y2=ax2+bx3,

a=1,b=2

y2=x22x3;

2)由圖象可得,y1y2時(shí),﹣1x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)【問題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx2k≠0)與y軸交于點(diǎn)A,與雙曲線y在第一象限內(nèi)交于點(diǎn)B(3,b),在第三象限內(nèi)交于點(diǎn)C

1)求雙曲線的解析式;

2)直接寫出不等式x2的解集;

3)若ODAB,在第一象限交雙曲線于點(diǎn)D,連接AD,求SAOD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長度至點(diǎn)F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實(shí)國務(wù)院的指示精神,地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤為w元.

(1)求w與x之間的函數(shù)關(guān)系式;

(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(x,y),當(dāng)x0時(shí),點(diǎn)P的變換點(diǎn)P′的坐標(biāo)為(y,﹣x);當(dāng)x0時(shí),點(diǎn)P的變換點(diǎn)P'的坐標(biāo)為(﹣x,y).

1)點(diǎn)A1,2)的變換點(diǎn)A'的坐標(biāo)是   

2)點(diǎn)B(﹣2,3)的變換點(diǎn)B′在反比例函數(shù)y的圖象上,則k   ,∠BOB'的大小是   °;

3)點(diǎn)P在拋物線y=﹣(x2n2+3上,點(diǎn)P的變換P′的坐標(biāo)是(﹣4,﹣n),求n的值.

4)點(diǎn)P在拋物線y=﹣x24x+1的圖象上,以線段PP′為對(duì)角線作正方形PMP'N,設(shè)點(diǎn)P的橫坐標(biāo)為m,當(dāng)正方形PMPN的對(duì)角線垂直于x軸時(shí),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一只紙箱中裝有除顏色外完全相同的紅色、黃色、藍(lán)色乒乓球共100個(gè).從紙箱中任意摸出一球,摸到紅色球、黃色球的概率分別是0.2、0.3

1)試求出紙箱中藍(lán)色球的個(gè)數(shù);

2)小明向紙箱中再放進(jìn)紅色球若干個(gè),小麗為了估計(jì)放入的紅球的個(gè)數(shù),她將箱子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回箱子中,多次重復(fù)上述過程后,她發(fā)現(xiàn)摸到紅球的頻率在0.5附近波動(dòng),請(qǐng)據(jù)此估計(jì)小明放入的紅球的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(0,2)B(a,a+2)、C(b,0)a>0,b>0),若AB=∠ACB最大時(shí),b的值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線和直線l:y=kx+b,點(diǎn)A(-3,-3),B(1,-1)均在直線l上.

1)若拋物線C與直線l有交點(diǎn),求a的取值范圍;

2)當(dāng)a=-1,二次函數(shù)的自變量x滿足m≤x≤m+2時(shí),函數(shù)y的最大值為-4,求m的值;

3)若拋物線C與線段AB有兩個(gè)不同的交點(diǎn),請(qǐng)直接寫出a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案