【題目】在平面直角坐標系中,已知點A(a,0)、C(0,b)滿足,
(1) 直接寫出:a=_________,b=_________;
(2) 點B為x軸正半軸上一點,如圖1,BE⊥AC于點E,交y軸于點D,連接OE,若OE平分∠AEB,求直線BE的解析式;
(3) 在(2)的條件下,點M為直線BE上一動點,連OM,將線段OM繞點M逆時針旋轉90°,如圖2,點O的對應點為N,當點M運動時,判斷點N的運動路線是什么圖形,并說明理由.
【答案】(1) a=-1,b=-3;(2)直線BE的解析式為y=x-1;(3)點N的運動路線是一條直線,解析式為.
【解析】試題分析:(1)根據(jù)非負數(shù)是性質來求a、b的值;
(2)如圖1,過點O作OF⊥OE,交BE于F.構建全等三角形:△EOC≌△FOB(ASA),△AOC≌△DOB(ASA),易求D(0,-1),B(3,0).利用待定系數(shù)法求得直線BE的解析式y(tǒng)=x-1;
(3)如圖2,過點M作MG⊥x軸,垂足為G,過點N作NH⊥GH,垂足為H.構建全等三角形:△GOM≌△HMN,故OG=MH,GM=NH.設M(m, m-1),則H(m,-m-1),N(m-1,-m-1),由此求得點N的橫縱坐標間的函數(shù)關系.
試題解析:(1) a=-1,b=-3
(2) 如圖1,過點O作OF⊥OE,交BE于F
∵BE⊥AC,OE平分∠AEB
∴△EOF為等腰直角三角形
可證:△EOC≌△FOB(ASA),∴OB=OC
可證:△AOC≌△DOB(ASA),∴OA=OD
∵A(-1,0),B(0,-3)
∴D(0,-1),B(3,0)
∴直線BD,即直線BE的解析式為y=x-1
(3) 依題意,△NOM為等腰直角三角形
如圖2,過點M作MG⊥x軸,垂足為G,過點N作NH⊥GH,垂足為H
∵△NOM為等腰直角三角形
易證△GOM≌△HMN,
∴OG=MH,GM=NH
由(2)知直線BD的解析式y=x-1
設M(m, m-1),則H(m, m-1)
∴N(m-1,-m-1)
令(m-1=x,-m-1=y,
消去參數(shù)m得, -
即直線l的解析式為
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中點,P是BC邊上的一動點(P與B,C不重合),連接PM并延長交AD的延長線于Q.
(1)試說明△PCM≌△QDM.
(2)當點P在點B、C之間運動到什么位置時,四邊形ABPQ是平行四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,AB=BC,直線l1、l2、l3分別通過A、B、C三點,且l1∥l2∥l3.若l1與l2的距離為5,l2與l3的距離為7,則Rt△ABC的面積為___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,拋物線y=x2向左平移1個單位,再向下平移4個單位,得到拋物線y=(x﹣h)2+k,所得拋物線與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.
(1)求h、k的值;
(2)判斷△ACD的形狀,并說明理由;
(3)在線段AC上是否存在點M,使△AOM與△ABC相似?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地相距20km,B在A的北偏東45°方向上,一森林保護中心P在A的北偏東30°和B的正西方向上,現(xiàn)計劃修建的一條高速公路將經(jīng)過AB(線段),已知森林保護區(qū)的范圍在以點P為圓心,半徑為4km的圓形區(qū)域內,請問這條高速公路會不會穿越保護區(qū)?為什么?(sin15°=0.259,cos15°=0.966,tan15°=0.268)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com