如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
(3)在(2)的結(jié)論下,過點C作CG⊥AD,CF=4,求CG.

(1)證明:∵△ABC是等邊三角形,
∴∠B=∠CAE=∠ACB=60°,AC=AB,
∵在△ABD和△CAE中

∴△ABD≌△CAE,
∴AD=CE.


(2)解:∵△ABD≌△CAE,
∴∠BAD=∠ACE,
∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠CAE=60°.

(3)解:∵CG⊥AD,
∴∠CGF=90°,
∵∠DFC=60°,CF=4,
∴∠FCG=30°,
∴GF=CF=2,
由勾股定理得:CG=2
分析:(1)求出∠B=∠CAE,AC=AB,根據(jù)SAS證出△ABD≌△CAE即可;
(2)根據(jù)全等三角形的性質(zhì)得出∠BAD=∠ACE,根據(jù)三角形外角性質(zhì)推出∠DFC=∠BAC,即可得出答案;
(3)在Rt△CGF中,解直角三角形求出CG即可.
點評:本題考查了全等三角形的性質(zhì)和判定,等邊三角形的性質(zhì),三角形外角性質(zhì),勾股定理,含30度角的直角三角形性質(zhì)的應用,主要考查學生綜合運用性質(zhì)進行推理和計算的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=3,CE=2,則△ABC的面積為(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點E在AC邊上,且∠EDC=15°.
(1)試說明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,D是AC的中點,延長BC到點E,使CE=CD,AB=10cm.
(1)求BE的長;
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點,且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習冊答案