【題目】如圖(1),E是直線AB、CD內(nèi)部一點(diǎn),AB∥CD,連接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,則∠AED等于多少度?

②若∠A=20°,∠D=60°,則∠AED等于多少度?

③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.

(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點(diǎn)E,與邊CD交于點(diǎn)F,①②③④分別是被射線FE隔開的四個(gè)區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個(gè)區(qū)域上點(diǎn),猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)

【答案】1①∠AED=70°;

②∠AED=80°;

猜想:AED=EAB+EDC,證明見解析;

(2)點(diǎn)P在區(qū)域①時(shí),∠EPF=360°﹣(∠PEB+PFC);

點(diǎn)P在區(qū)域時(shí),EPF=PEB+PFC

點(diǎn)P在區(qū)域時(shí),EPF=PEB﹣PFC

點(diǎn)P在區(qū)域④時(shí),∠EPF=PFC﹣∠PEB

【解析】(1)①根據(jù)圖形猜想得出所求角度數(shù)即可;
②根據(jù)圖形猜想得出所求角度數(shù)即可;
③猜想得到三角關(guān)系,理由為:延長(zhǎng)AE與DC交于F點(diǎn),由AB與DC平行,利用兩直線平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,再利用外角性質(zhì)及等量代換即可得證;
(2)分四個(gè)區(qū)域分別找出三個(gè)角關(guān)系即可.

解:(1)①∠AED=70°

②∠AED=80°;

③猜想:∠AED=EAB+EDC,

證明:延長(zhǎng)AEDC于點(diǎn)F,

ABDC,

∴∠EAB=EFD,

∵∠AEDEDF的外角,

∴∠AED=EDF+EFD=EAB+EDC;

2)根據(jù)題意得:

點(diǎn)P在區(qū)域①時(shí),∠EPF=360°﹣(∠PEB+PFC);

點(diǎn)P在區(qū)域②時(shí),∠EPF=PEB+PFC;

點(diǎn)P在區(qū)域③時(shí),∠EPF=PEB﹣∠PFC

點(diǎn)P在區(qū)域④時(shí),∠EPF=PFC﹣∠PEB

“點(diǎn)睛”此題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2+2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是( 。

A. m<﹣1 B. m>1 C. m<1且m≠0 D. m>﹣1且m≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】28米長(zhǎng)的鐵絲圍成一個(gè)一邊靠墻的長(zhǎng)方形。

(1)當(dāng)垂直于墻的一邊比另一邊少7米時(shí),求長(zhǎng)方形的面積。

(2)按下表中列出的數(shù)據(jù)要求,填寫表格。

觀察表格,你感到長(zhǎng)方形的面積會(huì)不會(huì)有最大的情況?如果會(huì),可能是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知|x+2|+(y﹣1)2=0,(x+y)2016=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3x2-2x+3的值是-4,則-9x2+6x-8的值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:a2b-(3ab2﹣a2b)+2(2ab2﹣a2b),其中a=-1,b=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果收入200元記作+200元,那么支出150元記

A.+150元 B.-150元

C.+50元 D.-50元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分5畫圖并填空:

如圖,在方格紙內(nèi)將ABC經(jīng)過(guò)一次平移后得到A′B′C′,圖中標(biāo)出了點(diǎn)C的對(duì)應(yīng)點(diǎn)C

1畫出平移后的A′B′C′,利用網(wǎng)格點(diǎn)和三角板畫圖

2畫出AB邊上的CD

3畫出BC邊上的AE;

4在平移過(guò)程中高CD掃過(guò)的面積 網(wǎng)格中,每一小格單位長(zhǎng)度為1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,∠A=∠B=∠C90°,請(qǐng)你再添加一個(gè)條件,使該四邊形是正方形,你添加的條件是__________.(填寫其中一種情況即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案