【題目】如圖,在矩形ABCD,AB=5,BC=7,點(diǎn)EAD上一個(gè)動(dòng)點(diǎn),BAE沿BE向矩形內(nèi)部折疊,當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)A1恰好落在∠BCD的平分線上時(shí),AE的長(zhǎng)為( )

A. 23 B. C. D. 34

【答案】B

【解析】

如圖,過點(diǎn)A1作A1M⊥BC于點(diǎn)M,A1N⊥AD于點(diǎn)N.設(shè)CM=A1M=x,則BM=7-x.在直角△A1MB中,由勾股定理得到:A1M2=A1B2-BM2=25-(7-x)2,由此求得x的值,進(jìn)而得出AE的長(zhǎng).

如圖,過點(diǎn)A1作A1MBC于點(diǎn)M,A1NAD于點(diǎn)N.

∵點(diǎn)A的對(duì)應(yīng)點(diǎn)A1恰落在∠BCD的平分線上,

∴設(shè)CM=A1M=x,則BM=7x.

又由折疊的性質(zhì)知AB=A1B=5.

∴在直角△A1MB中,由勾股定理得到:A1M2=A1B2BM2=25(7x)2.

∴25(7x)2=x2,

解得:x1=3,x2=4,

A1N=ABA1M=2或1,

設(shè)AE=y,則A1E=y,EN=(4y)或(3y),

y2=(4y)2+22,

解得:y=

y2=(3y)2+12,

解得:y=

故AE的長(zhǎng)為.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,點(diǎn)DE、F分別在三邊上,EAC的中點(diǎn),AD、BE、CF交于一點(diǎn)GBD2DC,SGEC3SGDC4,則ABC的面積是(  )

A.25B..30C.35D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,D為△ABC外一點(diǎn),且AD=BD,DEACCA的延長(zhǎng)線于點(diǎn)E,

1)求證:DE=AE+BC .

2)若,求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).

△ACB和△DCE的頂點(diǎn)都在格點(diǎn)上,ED的延長(zhǎng)線交AB于點(diǎn)F.

(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示為一個(gè)無蓋的正方體紙盒,現(xiàn)將其展開成平面圖,如圖(2)所示.已知展開圖中每個(gè)正方形的邊長(zhǎng)為1

(1)在展開圖(2)中可畫出最長(zhǎng)線段的長(zhǎng)度為 ,在平面展開圖(2)中這樣的最長(zhǎng)線段一共能畫出 條。

(2)試比較立體圖中∠ABC與平面展開圖中∠A′B′C′的大小關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在 Rt△ABC 中,∠C=Rt∠,AC=2BC,AB=5,D、E 分別在 AB、AC 上,且 AE ,DE∥BC.

(1)如圖(1),將△ADE 沿射線 DA 方向平移,得到△ A1 D1 E1 ,當(dāng) AD1 多大時(shí),四邊形 AA1 E1 E 為菱形;

(2)如圖(2),將△ADE 繞 A 點(diǎn)順時(shí)針旋轉(zhuǎn) 度( 00 1800 )得到△AD2E2

①連結(jié) CE2 , BD2 ,求:的值;

②連結(jié) CE2 , BE2 若△ ACE2 是直角三角形,求:△ ABE 2 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,E,F(xiàn)分別是AB,AD的中點(diǎn),DE,BF相交于點(diǎn)G,連接BD,CG,有下列結(jié)論:①∠BGD=120° ;②BG+DG=CG;③△BDF≌△CGB;④.其中正確的結(jié)論有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD(四邊相等,四個(gè)角都是直角)的邊長(zhǎng)為4,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿射線AD向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q從點(diǎn)D同時(shí)出發(fā),以相同的速度沿射線AD方向向右運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí),點(diǎn)Q也停止運(yùn)動(dòng),連接BP,過點(diǎn)PBP的垂線交過點(diǎn)Q平行于CD的直線l于點(diǎn)E,BECD相交于點(diǎn)F,連接PF,設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為ts),

1)求PBE的度數(shù);

2)當(dāng)t為何值時(shí),PQF是以PF為腰的等腰三角形?

3)試探索在運(yùn)動(dòng)過程中PDF的周長(zhǎng)是否隨時(shí)間t的變化而變化?若變化,說明理由;若不變,試求這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某賓館大廳要鋪圓環(huán)形的地毯,工人師傅只測(cè)量了與小圓相切的大圓的弦AB的長(zhǎng),就計(jì)算出了圓環(huán)的面積,若測(cè)量得AB的長(zhǎng)為20 m,則圓環(huán)的面積為(  )

A. 10 m2 B. 10 π m2 C. 100 m2 D. 100 π m2

查看答案和解析>>

同步練習(xí)冊(cè)答案