數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即 “以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。                                                            

如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:(1)AC·BC = AB·CD   (2)AC2= AD·AB

(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長。

(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

解:(1)顯然,方程x2-14x+48=0的兩根為6和8,

又AC>BC
∴AC=8,BC=6
由勾股定理AB=10
△ACD∽△ABC,得AC2= AD·AB
∴AD=6.4   
∵CM平分∠ACB
∴AM:MB=AC:CB
解得,AM=
∴MD=AD-AM=

(2)解:不訪設(shè)AB=a,CD=d,AC=b,BC=c

由三角形面積公式,得AB·CD=AC·BC
2AB·CD=2AC·BC         

又勾股定理,得AB2=AC2+BC2
∴AB2+2AB·CD =AC2+BC2+2AC·BC(等式性質(zhì))
∴AB2+2AB·CD =(AC+BC)2

∴AB2+2AB·CD+CD2 >(AC+BC)2

∴(AB+CD) 2 >(AC+BC)2
又AB、CD、AC、BC均大于零
∴AB+CD>AC+BC即a+d>b+c

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即“以形助數(shù)”.
如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=90°,CD⊥AB,D為垂足.易證得兩個(gè)結(jié)論:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D為垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長.
(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解:設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大.求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分10分)

數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。                                                            

如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:(1)AC·BC = AB·CD   (2)AC2= AD·AB

(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長。

(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【改編】(本小題滿分10分)
數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即“以形助數(shù)”。                                                           如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:(1)AC·BC = AB·CD   (2)AC2= AD·AB
(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長。
(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解:設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年南京市溧水縣中考數(shù)學(xué)一模試卷 題型:解答題

【改編】(本小題滿分10分)
數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即“以形助數(shù)”。                                                           如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:(1)AC·BC = AB·CD   (2)AC2= AD·AB
(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長。
(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解:設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011學(xué)年河北省考模擬考試數(shù)學(xué)卷 題型:選擇題

(本小題滿分10分)

數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即 “以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。                                                            

如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:(1)AC·BC = AB·CD   (2)AC2= AD·AB

(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長。

(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

 

查看答案和解析>>

同步練習(xí)冊答案