精英家教網(wǎng)如圖,矩形OBCD的邊OB=2
3
,OD=4,過(guò)點(diǎn)B、C且與x軸相切于點(diǎn)A的⊙M,與y軸的另一交點(diǎn)為E.
(1)求點(diǎn)A、E的坐標(biāo);
(2)求過(guò)A、C、E三點(diǎn)的拋物線的解析式.
分析:(1)可連接AM并延長(zhǎng)AM交BC于F,那么不難得出AF⊥BC,根據(jù)垂徑定理可知BF=OA=2,由此可求出A點(diǎn)的坐標(biāo).
求E點(diǎn)坐標(biāo),關(guān)鍵是求OE的長(zhǎng),可連接CE,AE,AC,由于∠EBC=90°,因此CE必過(guò)圓心M,則∠EAC=90°,因此可通過(guò)相似三角形OEA和DAC來(lái)求出OE的長(zhǎng),即可得出E點(diǎn)的坐標(biāo).
(2)根據(jù)A、C、E的坐標(biāo),用待定系數(shù)法即可求出拋物線的解析式.
解答:解:(1)連接AM并延長(zhǎng)AM交BC于F,
由于OD與圓M相切于A,因此AF⊥OD.
∵BC∥OD,
∴AF⊥BC精英家教網(wǎng)
∴BF=FC=OA=AD=2,
即A點(diǎn)的坐標(biāo)為(2,0)
連接CE、AE、AC,
∵∠EBC=90°,
∴CE是圓M的直徑,
∴∠EAC=90°,
可得△OEA∽△DAC,
OD
OE
=
CD
OA
,
OE=OD•OA÷CD=
2
3
3
,
因此E點(diǎn)的坐標(biāo)為(0,
2
3
3
).

(2)已知A,C,E的坐標(biāo)分別為(2,0),(4,2
3
),(0,
2
3
3
).
可設(shè)過(guò)這三點(diǎn)的拋物線的解析式為y=ax2+bx+
2
3
3
,
則有
4a+2b+
2
3
3
=0
16a+4b+
2
3
3
=2
3
,
解得
a=
3
3
b=-
3
,
因此拋物線的解析式為y=
3
3
x2-
3
x+
2
3
3
點(diǎn)評(píng):本題主要考查了矩形的性質(zhì),切線的性質(zhì),圓周角定理,相似三角形的應(yīng)用以及二次函數(shù)解析式的確定等知識(shí)點(diǎn),綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形OBCD的頂點(diǎn)C的坐標(biāo)為(1,3),則BD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧德)如圖,矩形OBCD的邊OD、OB分別在x軸正半軸和y軸的負(fù)半軸上,且OD=10,OB=8,將矩形的邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),使點(diǎn)C恰好與x軸上的點(diǎn)A重合
(1)直接寫出點(diǎn)A、B的坐標(biāo):A(
6
6
0
0
)、B(
0
0
-8
-8
);
(2)若拋物線y=-
1
3
x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),則這條拋物線的解析式是
y=-
1
3
x2+
10
3
x-8
y=-
1
3
x2+
10
3
x-8
;
(3)若點(diǎn)M是直線AB上方拋物線上的一個(gè)動(dòng)點(diǎn),作MN⊥x軸于點(diǎn)N,問(wèn)是否存在點(diǎn)M,使△AMN與△ACD相似?若存在,求出點(diǎn)M的橫坐標(biāo);若不存在,說(shuō)明理由;
(4)當(dāng)
7
2
≤x≤7時(shí),在拋物線上存在點(diǎn)P,使△ABP得面積最大,求△ABP面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形OBCD的頂點(diǎn)C的坐標(biāo)為(1,3),則線段BD的長(zhǎng)等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年山東省泰安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•泰安)如圖,矩形OBCD的邊OB=2,OD=4,過(guò)點(diǎn)B、C且與x軸相切于點(diǎn)A的⊙M,與y軸的另一交點(diǎn)為E.
(1)求點(diǎn)A、E的坐標(biāo);
(2)求過(guò)A、C、E三點(diǎn)的拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案