【題目】在中,分別是的中點(diǎn),若等腰繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到等腰,設(shè)旋轉(zhuǎn)角為,記直線與的交點(diǎn)為
(1)如圖,當(dāng)時(shí),線段的長(zhǎng)等于 ,線段的長(zhǎng)等于 .(直接填寫結(jié)果)
(2)如圖,當(dāng)時(shí),求證:,且;
(3)設(shè)的中點(diǎn)為,則線段的長(zhǎng)為 (直接填寫結(jié)果).
【答案】(1); ;(2)證明見解析;(3)
【解析】
(1)利用等腰直角三角形的性質(zhì)結(jié)合勾股定理即可求得答案;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得出,繼而證明,即可推得答案;
(3)利用直角三角形斜邊中線的性質(zhì)即可求得答案.
(1)∵∠BAC=90°,AC=AB=4,D、E分別是邊AB、AC的最短,
∴AE=AD=2,
∵等腰繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到等腰,設(shè)旋轉(zhuǎn)角為,
∴當(dāng)α=90°時(shí),AE1=2,∠E1AE=90°,
∴BD1=,CE1=,
故答案為:; ;
(2)當(dāng)時(shí),
是由繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,
,
在和中
,
,
,
記直線與交于點(diǎn),,
;
(3)如圖2,由(2)的證明可知旋轉(zhuǎn)角為α?xí)r,易證得,
∴∠1=∠2,
又∵∠3=∠4,∠1+∠4+∠BAC=180°,∠2+∠3+∠BPC=180°,
∴∠CPB=∠CAB=90°,
又∵M為BC的中點(diǎn),
∴PM=BC,
∴PM=,
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你知道古代數(shù)學(xué)家怎樣解一元二次方程嗎?以x2﹣2x﹣3=0為例,大致過程如下:第一步:將原方程變形為x2﹣2x=3,即x(x﹣2)=3.
第二步:構(gòu)造一個(gè)長(zhǎng)為x,寬為(x﹣2)的長(zhǎng)方形,長(zhǎng)比寬大2,且面積為3,如圖所示.
第三步:用四個(gè)這樣的長(zhǎng)方形圍成一個(gè)大正方形,中間是一個(gè)小正方形,如圖所示.
第四步:計(jì)算大正方形面積用x表示為 .長(zhǎng)方形面積為常數(shù) .小正方形面積為常數(shù) .
由觀察可得,大正方形面積等于四個(gè)長(zhǎng)方形與小正方形面積之和,得方程 ,兩邊開方可求得:x1=3,x2=﹣1.
(1)第四步中橫線上應(yīng)填入 ; ; ; .
(2)請(qǐng)參考古人的思考過程,畫出示意圖,寫出步驟,解方程x2﹣x﹣1=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售一種銷售成本為每千克30元的水產(chǎn)品,據(jù)市場(chǎng)分析,若按每千克40元銷售,一個(gè)月能售出500千克;銷售單價(jià)每漲1元,月銷售量就減少10千克,針對(duì)這種情況,請(qǐng)解答以下問題:
(1)當(dāng)銷售單價(jià)定為每千克45元時(shí),計(jì)算月銷售量和月銷售利潤(rùn);
(2)該商店想在月銷售成本不超過10000元的情況下,使得月銷售利潤(rùn)達(dá)到8000元,銷售單價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車從A地駛往B地,前路段為普通公路,其余路段為高速公路.已知汽車在普通公路上行駛的速度為60km/h,在高速公路上行駛的速度為100km/h,汽車從A地到B地一共行駛了2.2h.
請(qǐng)你根據(jù)以上信息,就該汽車行駛的“路程”或“時(shí)間”,提出一個(gè)用一元一次方程解決的問題,并寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,∥,=2,為的中點(diǎn),請(qǐng)僅用無刻度的直尺分別按下列要求畫圖(保留作圖痕跡)
(1)在圖1中,畫出△ABD的BD邊上的中線;
(2)在圖2中,若BA=BD, 畫出△ABD的AD邊上的高 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的兩條邊分別在軸和軸上,已知點(diǎn)、點(diǎn).
(1)若把矩形沿直線折疊,使點(diǎn)落在點(diǎn)處,直線與的交點(diǎn)分別為,求折痕的長(zhǎng);
(2)在(1)的條件下,點(diǎn)在軸上,在平面內(nèi)是否存在點(diǎn),使以為頂點(diǎn)的四邊形是菱形?若存在,則請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如圖,若為邊上的一動(dòng)點(diǎn),在上取一點(diǎn),將矩形繞點(diǎn)順時(shí)針旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,的對(duì)應(yīng)點(diǎn)為,請(qǐng)直接寫出的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解居民月用水量,某市對(duì)某區(qū)居民用水量進(jìn)行了抽樣調(diào)查,并制成如下直方圖.
(1)這次一共抽查了____戶;
(2)用水量不足10噸的有____戶,用水量超過16噸的有____戶;
(3)假設(shè)該區(qū)有8萬戶居民,估計(jì)用水量少于10噸的有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,AE=CD,AD,BE相交于點(diǎn)P,BQ⊥AD于點(diǎn)Q.
(1)求證:BP=2PQ;
(2)若PE=1,PQ=3,試求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為做好“家電下鄉(xiāng)”的惠民服務(wù),決定從廠家購(gòu)進(jìn)甲、乙、丙三種不同型號(hào)的電視機(jī)108臺(tái),其中甲種電視機(jī)的臺(tái)數(shù)是丙種的4倍,購(gòu)進(jìn)三種電視機(jī)的總金額不超過147 000元,已知甲、乙、丙三種型號(hào)的電視機(jī)的出廠價(jià)格分別為1 000元/臺(tái),1 500元/臺(tái),2 000元/臺(tái).
(1)求該商場(chǎng)至少購(gòu)買丙種電視機(jī)多少臺(tái)?
(2)若要求甲種電視機(jī)的臺(tái)數(shù)不超過乙種電視機(jī)的臺(tái)數(shù),問有哪些購(gòu)買方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com