【題目】如圖1,四邊形ABCD為矩形,曲線L經(jīng)過點D.點Q是四邊形ABCD內(nèi)一定點,點P是線段AB上一動點,作PM⊥AB交曲線L于點M,連接QM.
小東同學(xué)發(fā)現(xiàn):在點P由A運動到B的過程中,對于x1=AP的每一個確定的值,θ=∠QMP都有唯一確定的值與其對應(yīng),x1與θ的對應(yīng)關(guān)系如表所示:
x1=AP | 0 | 1 | 2 | 3 | 4 | 5 |
θ=∠QMP | α | 85° | 130° | 180° | 145° | 130° |
小蕓同學(xué)在讀書時,發(fā)現(xiàn)了另外一個函數(shù):對于自變量x2在﹣2≤x2≤2范圍內(nèi)的每一個值,都有唯一確定的角度θ與之對應(yīng),x2與θ的對應(yīng)關(guān)系如圖2所示:
根據(jù)以上材料,回答問題:
(1)表格中α的值為 .
(2)如果令表格中x1所對應(yīng)的θ的值與圖2中x2所對應(yīng)的θ的值相等,可以在兩個變量x1與x2之間建立函數(shù)關(guān)系.
①在這個函數(shù)關(guān)系中,自變量是 ,因變量是 ;(分別填入x1和x2)
②請在網(wǎng)格中建立平面直角坐標(biāo)系,并畫出這個函數(shù)的圖象;
③根據(jù)畫出的函數(shù)圖象,當(dāng)AP=3.5時,x2的值約為 .
【答案】(1)50°;(2)①x1,x2;②見解析;③﹣1.87(答案不唯一).
【解析】
(1)x=0時和x=5時,兩個θ角為同旁內(nèi)角,即可求解;
(2)①根據(jù)變量的定義即可求解;
②根據(jù)表格中θ的數(shù)據(jù),從圖2讀出θ對應(yīng)的x2的數(shù)據(jù)并列表,依據(jù)表格數(shù)據(jù)描圖即可;
③當(dāng)AP=3.5時,即x1=3.5時,從圖象讀出x2的值即可.
(1)當(dāng)x=5時,θ=∠QMP=130°,當(dāng)x=0時,θ=∠QMP=α,
x=0時和x=5時,兩個θ角為AD∥BC時的兩個同旁內(nèi)角,故α=180°﹣130°=50°,
故答案為50°;
(2)①根據(jù)變量的定義,x1是自變量,x2是因變量;
故答案為:x1,x2;
②根據(jù)表格中θ的數(shù)據(jù),從圖2讀出θ對應(yīng)的x2的數(shù)據(jù)并列出下表:
依據(jù)上述表格數(shù)據(jù),描點繪出下圖:
③當(dāng)AP=3.5時,即x1=3.5時,從圖象看x2的值約為﹣1.87,
故答案為﹣1.87(答案不唯一).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點,被列入《世界遺產(chǎn)名錄》.某周末,小樂和小夏相約去小雁塔游玩,在休息時,他們想利用所學(xué)知識測量小雁塔的高度,于是他們向工作人員借來測量工具由于觀測點與小雁塔底部間的距離不易測量,于是他們利用太陽光照射影子進(jìn)行測量,小樂先在小雁塔的影子頂端處豎直立一根長1.72米的木棒,并測得此時木棒的影長米;然后小夏在的延長線上找出一點,使得、、三點在同一直線上,并測得米已知圖中所有點均在同一平面內(nèi),,,根據(jù)以上測量過程及數(shù)據(jù),請你幫他們求出小雁塔的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線的圖象與反比例函數(shù)的圖象交于點.
(1)求、的值;
(2)點是軸上的一點,過點作軸的垂線,交直線于點,交反比例函數(shù)的圖象于點.橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記的圖象在點,之間的部分與線段,圍成的區(qū)域(不含邊界)為.
①當(dāng)時,直接寫出區(qū)域內(nèi)的整點的坐標(biāo)為______;
②若區(qū)域內(nèi)恰有6個整點,結(jié)合函數(shù)圖象,求出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段,過點的射線.在射線上截取線段,連接,點為的中點,點為邊上一動點,點為線段上一動點.以點為旋轉(zhuǎn)中心,將逆時針旋轉(zhuǎn)得到的對應(yīng)點為的對應(yīng)點為.
(1)當(dāng)點與點重合,且點不是中點時,
①據(jù)題意在圖中補(bǔ)全圖形;
②證明:以為頂點的四邊形是矩形.
(2)連接,若,從下列3個條件中選擇1個:
①,②,③,
當(dāng)條件______(填入序號)滿足時,一定有,并證明這個結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于的方程有實數(shù)根.
(1)求的取值范圍;
(2)若該方程有兩個實數(shù)根,取一個的值,求此時該方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過三年的新農(nóng)村建設(shè),年經(jīng)濟(jì)收入實現(xiàn)了翻兩番(即是原來的22倍).為了更好地了解該地區(qū)的經(jīng)濟(jì)收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后的年經(jīng)濟(jì)收入構(gòu)成結(jié)構(gòu)如圖,則下列結(jié)論中不正確的是( )
A.新農(nóng)村建設(shè)后,種植收入減少了
B.新農(nóng)村建設(shè)后,養(yǎng)殖收入實現(xiàn)了翻兩番
C.新農(nóng)村建設(shè)后,第三產(chǎn)業(yè)收入比新農(nóng)村建設(shè)前的年經(jīng)濟(jì)收入還多
D.新農(nóng)村建設(shè)后,第三產(chǎn)業(yè)收入與養(yǎng)殖收入之和超過了年經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線PQ與⊙O相切于點C,以OB,BC為邊作OBCD,連接AD并延長交⊙O于點E,交直線PQ于點F.
(1)求證:AF⊥CF;
(2)連接OC,BD交于點H,若tan∠OCB=3,⊙O的半徑是5,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l及直線l外一點P.如圖,
(1)在直線l上取一點A,連接PA;
(2)作PA的垂直平分線MN,分別交直線l,PA于點B,O;
(3)以O為圓心,OB長為半徑畫弧,交直線MN于另一點Q;
(4)作直線PQ.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( 。
A.△OPQ≌△OABB.PQ∥AB
C.AP=BQD.若PQ=PA,則∠APQ=60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:
身高情況分組表(單位:cm)
組別 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生的身高眾數(shù)在 組,中位數(shù)在 組;
(2)樣本中,女生身高在E組的人數(shù)有 人;
(3)已知該校共有男生400人,女生380人,請估計身高在160≤x<170之間的學(xué)生約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com