已知△ABC和△A′B′C′,AD是BC邊上的高,A′D′是B′C′邊上的高,AD=A′D′,AB=A′B′,AC=A′C′,則∠C和∠C′的關(guān)系是
不一定相等
不一定相等
.(填“相等”“不一定相等”或“一定不相等”)
分析:根據(jù)全等三角形的判定定理進行填空.
解答:解:當∠BAC=∠B′A′C′時,在△ABC和△A′B′C′中,
AB=A′B′
∠BAC=∠B′A′C′
AC=A′C′
,則△ABC≌△A′B′C′(SAS),則∠C=∠C′;
而當∠BAC≠∠B′A′C′時,在△ABC和△A′B′C′不全等,則∠C≠∠C′.
故答案為:不一定相等.
點評:本題考查三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC和△CDE都是等邊三角形,問:線段AE、BD的長度有什么關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC和△ABD均為等腰直角三角形,∠ACB=∠BAD=90°,點P為邊AC上任意一點(點P不與A、C兩點重合),作PE⊥PB交AD于點E,交AB于點F.
(1)求證:∠AEP=∠ABP.
(2)猜想線段PB、PE的數(shù)量關(guān)系,并證明你的猜想.
(3)若P為AC延長線上任意一點(如圖②),PE交DA的延長線于點E,其他條件不變,(2)中的結(jié)論是否成立?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在正方形網(wǎng)格中每個小正方形的邊長都是單位1,已知△ABC和△A1B1C1關(guān)于點O成中心對稱,點O直線x上.
(1)在圖中標出對稱中心O的位置;
(2)畫出△A1B1C1關(guān)于直線x對稱的△A2B2C2
(3)△ABC與△A2B2C2滿足什么幾何變換?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,∠A=∠A′=50°,∠C′=48°,則∠B=
82°
82°
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,已知△ABC和點O.
(1)畫出ABC關(guān)于點O對稱的圖形;
(2)簡要寫出畫法.

查看答案和解析>>

同步練習(xí)冊答案