【題目】如圖,將邊長為13的菱形ABCD沿AD方向平移至DCEF的位置,作EG⊥AB,垂足為點G,GD的延長線交EF于點H,已知BD=24,則GH=_____.
【答案】20
【解析】
首先證明△ADG≌△FDH可得GD=DH,由直角三角形斜邊中線的性質(zhì)可得GH=2DE,再利用菱形的性質(zhì)和勾股定理可求AC的長、即可解答;
解:連接AC、DE,
∵四邊形ABCD是菱形.
∴AC⊥BD,OB=OD= ,OA=OC.
∵BD=24,BC=13,
∴AC=2OC=2=10
∵四邊形ABCD和四邊形DCEF是菱形,
∴AB∥CD∥EF,AD=CD=DF,
∴∠GAD=∠F,
∵∠ADG=∠FDH,
∴△ADG≌△FDH,
∴DG=DH,AG=FH,
∵EG⊥AB,
∴∠BGE=∠GEF=90°,
∴GH=2DE,
∵∴由平移性質(zhì)可知:AC=DE,
∴GH=2×10=20,
故答案為:20.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:
命中環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 |
甲命中相應(yīng)環(huán)數(shù)的次數(shù) | 0 | 1 | 3 | 1 | 0 |
乙命中相應(yīng)環(huán)數(shù)的次數(shù) | 2 | 0 | 0 | 2 | 1 |
(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變。ㄌ“變大”、“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同線路行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.5.其中說法正確的是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用2500元購進A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、標價如下表所示.
類型 價格 | A型 | B型 |
進價(元/盞) | 40 | 65 |
標價(元/盞) | 60 | 100 |
(1)這兩種臺燈各購進多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進B種臺燈多少盞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D,E是線段AC的中點,連接ED.
(1)求證:ED是⊙O切線.
(2)求線段AD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商經(jīng)營甲、乙兩種水果,根據(jù)以往經(jīng)驗和市場行情,預(yù)計夏季某一段時間內(nèi),甲種水果的銷售利潤(萬元)與進貨量x(噸)近似滿足函數(shù)關(guān)系,乙種水果的銷售利潤(萬元)與進貨量x(噸)之間的函數(shù)關(guān)系如圖所示.
(1)求(萬元)與x(噸)之間的函數(shù)關(guān)系式;
(2)如果該批發(fā)商準備進甲、乙兩種水果共10噸,設(shè)乙種水果的進貨量為t噸,請你求出這兩種水果所獲得的銷售利潤總和W(萬元)與t(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進多少噸時獲得的銷售利潤總和最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校植物園沿路護欄的紋飾部分設(shè)計成若干個全等菱形圖案,每增加一個菱形圖案,紋飾長度就增加dcm,如圖所示,已知每個菱形圖案的邊長為10cm,其中一個內(nèi)角為60°.
(1)求一個菱形圖案水平方向的對角線長;
(2)若d=26,紋飾的長度L能否是6010cm?若能,求出菱形個數(shù);若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)興趣小組的活動中,小明進行數(shù)學(xué)探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
⑴小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由.
⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com