【題目】如圖,已知長方形ABCD,點E在線段AD上,將沿直線BE翻折后,點A落在線段CD上的點F.如果的周長為12,的周長為24,那么FC長為________.
【答案】6.
【解析】
由題意可得AE=EF,BF=AB=CD,根據(jù)△FDE的周長為12,△FCB的周長為24,可得DE+EF+DF=12,CF+BC+BF=24,等量代換后得CD+12- DF +CD-DF=24,于是可得(DC-DF)的值,即FC的長.
解:∵折疊后點A落在線段CD上的點F,
∴AE=EF,AB=BF,
∵四邊形ABCD是長方形,
∴AD=BC,CD=AB,
∵△FDE的周長為12,△FCB的周長為24,
∴DE+EF+DF=12,BC+CF+FC=24,
∴DF+AD=12,AB+BC+CD-DF=24,
∴CD+12- DF +CD-DF=24,
∴CD-DF=6,
∴FC=6.
科目:初中數(shù)學 來源: 題型:
【題目】七年級⑴班想買一些運動器材供班上同學陽光體育活動使用,班主任安排班長去商店買籃球和排球,下面是班長與售貨員的對話:
班長:阿姨,您好! 售貨員:同學,你好,想買點什么?
⑴根據(jù)這段對話,你能算出籃球和排球的單價各是多少嗎?
⑵六一兒童節(jié)店里搞活動有兩種套餐,1、套裝打折:五個籃球和五個排球為一套裝,套裝打 八折:2、滿減活動:999 減 100,1999 減 200;兩種活動不重復參與,學校需要 15個籃球,13 個排球作為獎品,請問如何安排購買更劃算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=8,P,E分別是線段AC、BC上的點,且四邊形PEFD為矩形.
(1)若△PCD是等腰三角形時,求AP的長;
(2)若AP=,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下圖是2019年10月的月歷,用如圖所示的“凹”字型在月歷中任意圈出5個數(shù),設“凹”字型框中的五個數(shù)分別,,,,.
(1)直接寫出______,______(用含的式子表示);______;
(2)在移動“凹”字型框過程中,小明說被框住的5個數(shù)字之和可能為106,小敏說被框住的5個數(shù)字之和可能為90,你同意他們的說法嗎?請說明理由;
(3)若另一個“凹”字型框框住的五個數(shù)分別為,,,,,且,則符合條件的的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,MA=MC,MB=MD,以AB為直徑的O過點M且與DC延長線相切于點E.
(1)求證:四邊形ABCD是菱形;
(2)若AB=4,求的長(結果請保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的頂點為,與y軸交于點若平移該拋物線使其頂點P沿直線移動到點,點A的對應點為,則拋物線上PA段掃過的區(qū)域陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩根木條,一根長20cm,另一根長24cm,將它們一端重合且放在同一條直線上,此時兩根木條的中點之間的距離為( )
A. 2cm B. 4cm C. 2cm或22cm D. 4cm或44cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角坐標系中,將△ABC繞點B順時針旋轉,使點A旋轉至y軸的正半軸上的A處,若AO=OB=2,則陰影部分面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是弧BDC的中點,AE⊥AC于A,與⊙O及CB的延長線交于點F,E,且弧BF=弧AD.
(1)求證:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com