【題目】設(shè)(2y﹣z):(z+2x):y=1:5:2,則(3y﹣z):(2z﹣x):(x+3y)=( 。
A.1:5:7
B.3:5:7
C.3:5:8
D.2:5:8

【答案】B
【解析】先根據(jù)已知條件,利用z來表示x和y,然后再將其代入所求化簡、求值。
由已知,得
2(2y﹣z)=y,即y=z,①
5(2y﹣z)=z+2x,即x=5y﹣3z,②
由①②,得
x=z,③
把①③代入(3y﹣z):(2z﹣x):(x+3y),得
(3y﹣z):(2z﹣x):(x+3y)=z:z:z=3:5:7.
故選B.
【考點(diǎn)精析】本題主要考查了比例線段的相關(guān)知識(shí)點(diǎn),需要掌握如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是a/b=m/n,或?qū)懗蒩:b=m:n才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形ABC中,∠ACB=90°,直線l過點(diǎn) C.

(1)當(dāng)AC=BC時(shí),如圖1,分別過點(diǎn)ABAD⊥直線l于點(diǎn)D,BE⊥直線l于點(diǎn) E.ACD與△CBE是否全等,并說明理由;

(2)當(dāng)AC=8cm,BC=6cm時(shí),如圖2,點(diǎn)B與點(diǎn)F關(guān)于直線l對(duì)稱,連接BF、CF.點(diǎn)MAC上一點(diǎn),點(diǎn)NCF上一點(diǎn),分別過點(diǎn)M、NMD⊥直線l于點(diǎn)D,NE⊥直線l于點(diǎn)E,點(diǎn)MA點(diǎn)出發(fā),以每秒1cm的速度沿A→C路徑運(yùn)動(dòng),終點(diǎn)為 C.點(diǎn)N從點(diǎn)F出發(fā),以每秒3cm的速度沿F→C→B→C→F路徑運(yùn)動(dòng),終點(diǎn)為F.點(diǎn)M、N同時(shí)開始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

①當(dāng)△CMN為等腰直角三角形時(shí),求t的值;

②當(dāng)△MDC與△CEN全等時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船沿正南方向以30海里/時(shí)的速度勻速航行,在M處觀測到燈塔P在西偏南68°方向上,航行2小時(shí)后到達(dá)N處,觀測燈塔P在西偏南46°方向上,若該船繼續(xù)向南航行至離燈塔最近位置,則此時(shí)輪船離燈塔的距離約為(由科學(xué)計(jì)算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)(  )

A.22.48
B.41.68
C.43.16
D.55.63

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為半圓O的直徑,C為半圓O上一點(diǎn),連接AC,BC,過點(diǎn)O作OD⊥AC于點(diǎn)D,過點(diǎn)A作半圓O的切線交OD的延長線于點(diǎn)E,連接BD并延長交AE于點(diǎn)F.

(1)求證:AEBC=ADAB;
(2)若半圓O的直徑為10,sin∠BAC= ,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=13cm,BC=10cm,ADBC的中線,且AD=12cm

(1)求AC的長;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的矩形ABCD中,E點(diǎn)在CD上,且AE<AC.若P、Q兩點(diǎn)分別在AD、AE上,AP:PD=4:1,AQ:QE=4:1,直線PQ交AC于R點(diǎn),且Q、R兩點(diǎn)到CD的距離分別為q、r,則下列關(guān)系何者正確?(  )
A.q<r,QE=RC
B.q<r,QE<RC
C.q=r,QE=RC
D.q=r,QE<RC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系xoy中,直線l:y=kx+b交x軸,y軸于點(diǎn)E,F(xiàn),點(diǎn)B的坐標(biāo)是(2,2),過點(diǎn)B分別作x軸、y軸的垂線,垂足為A、C,點(diǎn)D是線段CO上的動(dòng)點(diǎn),以BD為對(duì)稱軸,作與△BCD或軸對(duì)稱的△BC′D.

(1)當(dāng)∠CBD=15°時(shí),求點(diǎn)C′的坐標(biāo).
(2)當(dāng)圖1中的直線l經(jīng)過點(diǎn)A,且k=﹣ 時(shí)(如圖2),求點(diǎn)D由C到O的運(yùn)動(dòng)過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.
(3)當(dāng)圖1中的直線l經(jīng)過點(diǎn)D,C′時(shí)(如圖3),以DE為對(duì)稱軸,作于△DOE或軸對(duì)稱的△DO′E,連結(jié)O′C,O′O,問是否存在點(diǎn)D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在直線跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步500m,先到終點(diǎn)

的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時(shí)間t(s)之間的關(guān)系

如圖所示,給出以下結(jié)論:a=8;b=92;c=123.其中正確的是【 】

A.①②③ B.僅有①② C.僅有①③ D.僅有②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料
如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問題

(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請(qǐng)直接寫出 的值(用含α的式子表示出來)

查看答案和解析>>

同步練習(xí)冊(cè)答案