如圖,在平面直角坐標中,點O為坐標原點,直線y=﹣x+4與x軸交于點A,過點A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點B,且點B的橫坐標為1.
(1)求a,b的值;
(2)點P是線段AB上一動點(點P不與點A、B重合),過點P作PM∥OB交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,過點P作PF⊥MC于點F,設PF的長為t,MN的長為d,求d與t之間的函數(shù)關系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當S△ACN=S△PMN時,連接ON,點Q在線段BP上,過點Q作QR∥MN交ON于點R,連接MQ、BR,當∠MQR﹣∠BRN=45°時,求點R的坐標.
(1)a=﹣1,b=4;
(2)d=3t+t=4t;
(3)R(,).
【解析】
試題分析:(1)由已知可得出A,B點坐標,從而根據(jù)待定系數(shù)法得出a,b的值;
(2)由已知可得出AD=BD,從而∠BAD=∠ABD=45°,進而可得出tan∠BOD=tan∠MPF,故=3,MF=3PF=3t,即可得出d與t的函數(shù)關系;
(3)由S△ACN=S△PMN,則可得AC2=2t2,從而得出AC=2t,CN=2t,則M(4﹣2t,6t),求出t的值,進而得出△PMQ∽△NBR,求出R點坐標.
試題解析:(1)∵y=﹣x+4與x軸交于點A,
∴A(4,0),
∵點B的橫坐標為1,且直線y=﹣x+4經(jīng)過點B,
∴B(1,3),
∵拋物線y=ax2+bx經(jīng)過A(4,0),B(1,3),
∴,
解得:,
∴a=﹣1,b=4;
(2)如圖,作BD⊥x軸于點D,延長MP交x軸于點E,
∵B(1,3),A(4,0),
∴OD=1,BD=3,OA=4,
∴AD=3,
∴AD=BD,
∵∠BDA=90°,∠BAD=∠ABD=45°,
∵MC⊥x軸,∴∠ANC=∠BAD=45°,
∴∠PNF=∠ANC=45°,
∵PF⊥MC,∴∠FPN=∠PNF=45°,
∴NF=PF=t,
∵∠DFM=∠ECM=90°,∴PF∥EC,
∴∠MPF=∠MEC,
∵ME∥OB,∴∠MEC=∠BOD,
∴∠MPF=∠BOD,
∴tan∠BOD=tan∠MPF,
∴=3,
∴MF=3PF=3t,
∵MN=MF+FN,
∴d=3t+t=4t;
(3)如備用圖,由(2)知,PF=t,MN=4t,
∴S△PMN=MN×PF=×4t×t=2t2,
∵∠CAN=∠ANC,
∴CN=AC,
∴S△ACN=AC2,
∵S△ACN=S△PMN,
∴AC2=2t2,
∴AC=2t,∴CN=2t,
∴MC=MN+CN=6t,
∴OC=OA﹣AC=4﹣2t,
∴M(4﹣2t,6t),
由(1)知拋物線的解析式為:y=﹣x2+4x,
將M(4﹣2t,6t)代入y=﹣x2+4x得:
﹣(4﹣2t)2+4(4﹣2t)=6t,
解得:t1=0(舍),t2=,
∴PF=NF=,AC=CN=1,OC=3,MF=,PN=,PM=,AN=,
∵AB=3,
∴BN=2,
作NH⊥RQ于點H,
∵QR∥MN,
∴∠MNH=∠RHN=90°,
∠RQN=∠QNM=45°,∴∠MNH=∠NCO,
∴NH∥OC,
∴∠HNR=∠NOC,
∴tan∠HNR=tan∠NOC,
∴,
設RH=n,則HN=3n,
∴RN=n,QN=3n,
∴PQ=QN﹣PN=3n﹣,
∵ON=,
OB=,
∴OB=ON,∴∠OBN=∠BNO,
∵PM∥OB,
∴∠OBN=∠MPB,
∴∠MPB=∠BNO,
∵∠MQR﹣∠BRN=45°,∠MQR=∠MQP+∠RQN=∠MQP+45°,
∴∠BRN=∠MQP,
∴△PMQ∽△NBR,
∴,
∴,
解得:n=,
∴R的橫坐標為:3﹣,R的縱坐標為:1﹣=,
∴R(,).
考點:1、待定系數(shù)法;2、二次函數(shù);3、相似三角形的判定與性質(zhì);4、勾股定理
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(黑龍江綏化卷)數(shù)學(解析版) 題型:選擇題
下列圖形中,既是中心對稱圖形又是軸對稱圖形的是( 。
A.角 B.等邊三角形 C.平行四邊形 D.圓
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(黑龍江大慶卷)數(shù)學(解析版) 題型:解答題
如圖①,已知等腰梯形ABCD的周長為48,面積為S,AB∥CD,∠ADC=60°,設AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如圖②,當S取最大值時,等腰梯形ABCD的四個頂點都在⊙O上,點E和點F分別是AB和CD的中點,求⊙O的半徑R的值.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(黑龍江哈爾濱卷)數(shù)學(解析版) 題型:解答題
如圖,方格紙中每個小正方形的邊長均為1,四邊形ABCD的四個頂點都在小正方形的頂點上,點E在BC邊上,且點E在小正方形的頂點上,連接AE.
(1)在圖中畫出△AEF,使△AEF與△AEB關于直線AE對稱,點F與點B是對稱點;
(2)請直接寫出△AEF與四邊形ABCD重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(黑龍江哈爾濱卷)數(shù)學(解析版) 題型:填空題
若x=﹣1是關于x的一元二次方程x2+3x+m+1=0的一個解,則m的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(青海西寧卷)數(shù)學(解析版) 題型:解答題
如圖,AB是⊙O的直徑,點C,D是半圓O的三等分點,過點C作⊙O的切線交AD的延長線于點E,過點D作DF⊥AB于點F,交⊙O于點H,連接DC,AC.
(1)求證:∠AEC=90°;
(2)試判斷以點A,O,C,D為頂點的四邊形的形狀,并說明理由;
(3)若DC=2,求DH的長.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(重慶A卷)數(shù)學(解析版) 題型:選擇題
如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,…,按此規(guī)律,則第(6)個圖形中面積為1的正方形的個數(shù)為( )
(1) (2) (3) (4)
A.20 B.27 C.35 D.40
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com