【題目】今年,長沙開始推廣垃圾分類,分類垃圾桶成為我們生活中的必備工具.某學校開學初購進型和型兩種分類垃圾桶,購買型垃圾桶花費了2500元,購買型垃圾桶花費了2000元,且購買型垃圾桶數(shù)量是購買型垃圾桶數(shù)量的2倍,已知購買一個型垃圾桶比購買一個型垃圾桶多花30元.

1)求購買一個型垃圾桶、B型垃圾桶各需多少元?

2)由于實際需要,學校決定再次購買分類垃圾桶,已知此次購進型和型兩種分類垃圾桶的數(shù)量一共為50個,恰逢市場對這兩種垃圾桶的售價進行調(diào)整,型垃圾桶售價比第一次購買時提高了8%,型垃圾桶按第一次購買時售價的9折出售,如果此次購買型和型這兩種垃圾桶的總費用不超過3240元,那么此次最多可購買多少個型垃圾桶?

【答案】1)購買一個型垃圾桶、型垃圾桶分別需要50元和80元;(2)此次最多可購買30型垃圾桶.

【解析】

1)設(shè)一個A型垃圾桶需x元,則一個B型垃圾桶需(x+30)元,根據(jù)購買A型垃圾桶數(shù)量是購買B品牌足球數(shù)量的2倍列出方程解答即可;
2)設(shè)此次可購買aB型垃圾桶,則購進A型垃圾桶(50-a)個,根據(jù)購買A、B兩種垃圾桶的總費用不超過3240元,列出不等式解決問題.

1)設(shè)購買一個型垃圾桶需元,則購買一個型垃圾桶需元.

由題意得:

解得:

經(jīng)檢驗是原分式方程的解.

答:購買一個型垃圾桶、型垃圾桶分別需要50元和80元.

2)設(shè)此次購買型垃圾桶,則購進型垃圾桶個,

由題意得:

解得

是整數(shù),

最大為30

答:此次最多可購買30型垃圾桶.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了改善辦公條件,計劃從廠家購買兩種型號電腦.已知每臺種型號電腦價格比每臺種型號電腦價格多01萬元,且用10萬元購買種型號電腦的數(shù)量與用8萬元購買種型號電腦的數(shù)量相同.求、兩種型號電腦每臺價格各為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,給出下列說法:

;②方程的根為,;④當時,值的增大而增大;⑤當時,其中,正確的說法有________(請寫出所有正確說法的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某校為了創(chuàng)建書香校園,去年購進一批圖書.經(jīng)了解,科普書的單價比文學書的單價多4元,用12000元購進的科普書與用8000元購進的文學書本數(shù)相等.

1)文學書和科普書的單價各多少錢?

2)今年文學書和科普書的單價和去年相比保持不變,該校打算用10000元再購進一批文學書和科普書,問購進文學書550本后至多還能購進多少本科普書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】I為△ABC的內(nèi)心,連AI交△ABC的外接圓于點D,若AI=2CD,點E為弦AC的中點,連接EI,IC,若IC=6,ID=5,則IE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一塊含30°(即CAB=30°)角的三角板和一個量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN重合,其量角器最外緣的讀數(shù)是從N點開始(即N點的讀數(shù)為0),現(xiàn)有射線CP繞著點C從CA順時針以每秒2度的速度旋轉(zhuǎn)到與ACB外接圓相切為止.在旋轉(zhuǎn)過程中,射線CP與量角器的半圓弧交于E.

(1)當射線CP與ABC的外接圓相切時,求射線CP旋轉(zhuǎn)度數(shù)是多少?

(2)當射線CP分別經(jīng)過ABC的外心、內(nèi)心時,點E處的讀數(shù)分別是多少?

(3)當旋轉(zhuǎn)7.5秒時,連接BE,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;BG=GC;AGCF;SFGC=3.其中正確結(jié)論的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一直角三角形紙片,邊,,將該直角三角形紙片沿折疊,使點與點重合,則四邊形的周長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,點、分別是等邊、上的點,連接、,若,求證:

(2)如圖2,在(1)問的條件下,點的延長線上,連接延長線于點,.若,求證:

查看答案和解析>>

同步練習冊答案