【題目】如圖,一次函數(shù)y=x+2的圖象與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點,且點A的坐標(biāo)為(1,m).
(1)求反比例函數(shù)y=(k≠0)的表達式;
(2)若P是y軸上一點,且滿足△ABP的面積為6,求點P的坐標(biāo).
【答案】(1) y=(2) P(0,5)或(0,﹣1)
【解析】
(1)把A點坐標(biāo)代入一次函數(shù)解析式可求得m的值,可得到A點坐標(biāo),再把A點坐標(biāo)代入反比例函數(shù)解析式可求得k的值;
(2)聯(lián)立方程,解方程組即可求得B的坐標(biāo),設(shè)直線與y軸的交點為C(0,2),根據(jù)△ABP的面積為6得出PC|xB|+PC|xA|=6,求出PC的長,即可求得P點的坐標(biāo).
解:(1)∵一次函數(shù)圖象過A點,
∴m=1+2,解得m=3,
∴A點坐標(biāo)為(1,3),
又∵反比例函數(shù)圖象過A點,
∴k=1×3=3,
∴反比例函數(shù)y=(k≠0)的表達式為y=.
(2)∵,
解得或
∴B(﹣3,﹣1),
設(shè)直線與y軸的交點為C(0,2),
∵△ABP的面積為6,
∴PC|xB|+PC|xA|=6,
∴PC(1+3)=6,
∴PC=3,
∴P(0,5)或(0,﹣1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB是⊙O的切線,切點為B,AO交⊙O于點C,過點C作DC⊥OA,交AB于點D.
(1)求證:∠CDO=∠BDO;
(2)若∠A=30°,⊙O的半徑為4,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學(xué)生進行調(diào)查,要求每名學(xué)生從中只選一類最喜愛的電視節(jié)目.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.
類別 | A | B | C | D | E |
節(jié)目類型 | 新聞 | 體育 | 動畫 | 娛樂 | 戲曲 |
人數(shù) | 12 | 30 | m | 54 | 9 |
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生中,最喜愛體育節(jié)目的有 人,這些學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %.
(2)被調(diào)查學(xué)生的總?cè)藬?shù)為 人,統(tǒng)計表中m的值為 ,統(tǒng)計圖中n的值為 ;
(3)在統(tǒng)計圖中,B類所對應(yīng)扇形圓心角的度數(shù)為 ;
(4)該校共有1000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校最喜愛A類節(jié)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是以O為圓心的半圓的直徑,半徑CO⊥AO,點M是上的動點,且不與點A、C、B重合,直線AM交直線OC于點D,連結(jié)OM與CM.
(1)若半圓的半徑為10.
①當(dāng)∠AOM=60°時,求DM的長;
②當(dāng)AM=12時,求DM的長.
(2)探究:在點M運動的過程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是正方形ABCD的對角線AC上的一個動點(不與A、C重合),作EF⊥AC交邊BC于點F,連接AF、BE交于點G.
(1)求證:△CAF∽△CBE;
(2)若AF平分∠BAC,求證:AC2=2AGAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k為常數(shù),且k≠5)經(jīng)過點A(1,3).
(1)求反比例函數(shù)的解析式;
(2)在x軸正半軸上有一點B,若△AOB的面積為6,求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC外角∠EAC的平分線,AD與△ABC的外接圓⊙O交于點D.
(1)求證:DB=DC;
(2)若∠CAB=30°,BC=4,求劣弧的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與軸的一個交點坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:
① 4ac<b2;② 方程ax2+bx+c=0的兩個根是;③ 3a+c>0;④ 當(dāng)y>0時,x的取值范圍是-1≤x<3;⑤ 當(dāng)x<0時,y隨x增大而增大;
其中結(jié)論正確有__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù) a、b、c滿足 a+b2=1,a+1=c2﹣2c,若 m=2a2+5b2,實數(shù) m的取值范圍是______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com